Does Double-Amputee Oscar Pistorius Have an Unfair Advantage at the 2012 Olympic Games?
Science shows that Pistorius uses less energy than his competitors, raising questions about whether or not he should allowed to compete in London
- By Rose Eveleth
- July 23, 2012, Subscribe
Runners who've faced off against Oscar Pistorius say they know when the South African is closing in on them from behind. They hear a distinctive clicking noise growing louder, like a pair of scissors slicing through the air—the sound of Pistorius's Flex-Foot Cheetah prosthetic legs.
It's those long, J-shaped, carbon-fiber lower legs—and the world-class race times that come with them—that have some people asking an unpopular question: Does Pistorius, the man who has overcome so much to be the first double amputee to run at an Olympic level, have an unfair advantage? Scientists are becoming entwined in a debate over whether Pistorius should be allowed to compete in the 2012 London Games.
Pistorius was born without fibulas, one of the two long bones in the lower leg. He was unable to walk as a baby, and at 11 months old both of his legs were amputated below the knee. But the growing child didn't let his disability slow him down. At age 12 he was playing rugby with the other boys, and in 2005, at age 18, he ran the 400-meter race in 47.34 seconds at the South African Championships, sixth best. Now 25, the man nicknamed the “Blade Runner” has qualified for the 2012 Summer Olympics in London, just three weeks before the games were to begin. But should he be allowed to compete?
The question seems preposterous. How could someone without lower legs possibly have an advantage over athletes with natural legs? The debate took a scientific turn in 2007 when a German team reported that Pistorius used 25 percent less energy than natural runners. The conclusion was tied to the unusual prosthetic made by an Icelandic company called Össur. The Flex-Foot Cheetah has become the go-to running prosthetic for Paralympic (and, potentially Olympic) athletes. "When the user is running, the prosthesis's J curve is compressed at impact, storing energy and absorbing high levels of stress that would otherwise be absorbed by a runner's ankle, knee, hip and lower back," explains Hilmar Janusson, executive vice president of research and development at Össur. The Cheetah's carbon-fiber layers then rebound off the ground in response to the runner's strides.
After the German report was released, the International Association of Athletics Federations (IAAF) banned Pistorius from competing. Pistorius hired Jeffrey Kessler, a high-powered lawyer who's represented athletes from the National Basketball Association and National Football League. It soon became clear that the IAAF's study was very poorly designed, so when Pistorius's team asked for a new study they got it. Soon scientists gathered at Rice University to figure out just what was going on with Pistorius's body.
The scientific team included Peter Weyand, a physiologist at Southern Methodist University who had the treadmills needed to measure the forces involved in sprinting. Rodger Kram, at the University of Colorado at Boulder, was a track and field fan who studied biomechanics. Hugh Herr, a double amputee himself, was a renowned biophysicist. The trio, and other experts, measured Pistorius's oxygen consumption, his leg movements, the forces he exerted on the ground and his endurance. They also looked at leg-repositioning time—the amount of time it takes Pistorius to swing his leg from the back to the front.
After several months the team concluded in a paper for The Journal of Applied Physiology that Pistorius was "physiologically similar but mechanically dissimilar" to someone running with intact legs. He uses oxygen the same way natural-legged sprinters do, but he moves his body differently.
The results of the Rice University study—physiologically similar, mechanically different—were presented to the Court of Arbitration for Sport (CAS) in Switzerland in 2008, which decided that Pistorius should be allowed to run, revoking the IAAF's decision. He missed qualifying for the 2008 Beijing Olympics by 0.7 second.
But then scientific controversy arose. Members of the team that had published the paper began to express very different ideas about what, exactly, "mechanically different" meant. One group said that Pistorius's differences leave him on a level running field with all the other athletes. The other said that Pistorius is mechanically different in a way that confers a serious competitive advantage.
Weyand, the scientist with the treadmills, believes that Pistorius's prosthetics allow him to move in a way that no non-prosthetics wearer could, giving him an advantage. Kram, the biomechanics expert, believes that the Blade Runner's blades hinder him just as much as they help.
Subscribe now for more of Smithsonian's coverage on history, science and nature.









Comments (2)
"Athletes should be in a different race only when motors or alternate power sources are introduced, he says". I'm not an athlete, but I'm pretty sure I could beat the world record for any long distance race under my own power when given sufficient mechanical resources - I could use a bicycle. This may be taking it to the extreme, but it illustrates the grey area between pure biological running and running with a mechanical advantage. I would say that no mechanical advantage should be allowed in normal running events.
Posted by Peter Bone on August 21,2012 | 09:44 AM
He should not be allowed to run in regular Olympics. Nothing personal: nobody with prosthetics should be allowed. The reason is that it becomes incredible difficult to discern who is a "bionic" athlete versus a full human one. What's about a prosthetic/bionic eye in precision sports? What's about an arm in a trowing type of competition. What's about blood or blood components? Now we made the link to doping, which is forbidden. And what about full body athletes, who might be tempted or pressured to get amputated to benefit from similar features.
Posted by Marc on July 29,2012 | 12:57 PM