Galileo's Vision

Four hundred years ago, the Italian scientist looked into space and changed our view of the universe

Galileo was the first to discover the moons of Jupiter. (Michael Benson / Kinetikon Pictures / Corbis (Jupiter) / Scala / Art Resource, NY (Galileo))
Smithsonian Magazine | Subscribe

Inside a glass case was a plain-looking tube, worn and scuffed. Lying in the street, it would have looked like a length of old pipe. But as I approached it, Derrick Pitts—only half in jest—commanded: "Bow down!"

The unremarkable-looking object is in fact one of the most important artifacts in the history of science: it's one of only two surviving telescopes known to have been made by Galileo Galilei, the man who helped revolutionize our conception of the universe. The telescope was the centerpiece of "Galileo, the Medici and the Age of Astronomy," an exhibition at the Franklin Institute in Philadelphia in 2009.

Pitts, who runs the institute's planetarium and other astronomy programs, says that receiving the telescope from Florence's Galileo Museum—the first time the instrument ever left Florence—was "something of a religious experience." Understandably so: if Galileo is considered a patron saint of astronomy, then his telescope is one of its most holy relics. "Galileo's work with the telescope unleashed the notion that ours is a sun-centered solar system and not an Earth-centered solar system," says Pitts. In other words, from that ugly old cylinder came the profound idea that we are not the center of the universe.

It was a dangerous idea, and one that cost Galileo his freedom.

On a starry night in Padua 400 years ago, Galileo first turned a telescope toward the sky. It might seem the most natural of actions—after all,what else does one do with a telescope? But in 1609, the instrument, which had been invented only the year before by Dutch opticians, was known as a "spyglass," in anticipation of its military uses. The device was also sold as a toy. When Galileo read of it, he quickly set about making a much more powerful version. The Dutch telescopes magnified images by 3 times; Galileo's telescopes magnified them by 8 to 30 times.

At the time, astronomy, like much of science, remained under the spell of Aristotle. Almost 2,000 years after his death, the giant of Greek philosophy was held in such high regard that even his most suspect pronouncements were considered unimpeachable. Aristotle had maintained that all celestial objects were perfect and immutable spheres, and that the stars made a dizzying daily journey around the center of the universe, our stationary Earth. Why scrutinize the sky? The system had already been neatly laid out in books. Astronomers "wish never to raise their eyes from those pages," Galileo wrote in frustration, "as if this great book of the universe had been written to be read by nobody but Aristotle, and his eyes had been destined to see for all posterity."

In Galileo's day, the study of astronomy was used to maintain and reform the calendar. Sufficiently advanced students of astronomy made horoscopes; the alignment of the stars was believed to influence everything from politics to health.

Certain pursuits were not in an astronomer's job description, says Dava Sobel, author of the best-selling historical memoir Galileo's Daughter (1999). "You didn't talk about what the planets were made of," she says. "It was a foregone conclusion that they were made of the fifth essence, celestial material that never changed." Astronomers might make astrological predictions, but they weren't expected to discover anything new.

So when Galileo, then 45 years old, turned his telescope to the heavens in the fall of 1609, it was a small act of dissent. He saw that the Milky Way was in fact "a congeries of innumberable stars," more even than his tired hand could draw. He saw the pockmarked surface of the moon, which, far from being perfectly spherical, was in fact "full of cavities and prominences, being not unlike the face of the Earth." Soon he would note that Jupiter had four moons of its own and that Venus had moonlike phases, sometimes waxing to a disk, sometimes waning to a crescent. He later saw imperfections in the Sun. Each discovery drew Aristotle's system further into question and lent ever more support to the dangerously revolutionary view that Galileo had privately come to hold—set out just a half-century earlier by a Polish astronomer named Nicolaus Copernicus—that Earth traveled around the Sun.

"I give infinite thanks to God," Galileo wrote to the powerful Florentine statesman Belisario Vinta in January of 1610, "who has been pleased to make me the first observer of marvelous things."


Comment on this Story

comments powered by Disqus