What Lies Ahead for 3-D Printing?- page 2 | Science | Smithsonian
The Wake Forest Institute for Regenerative Medicine prints ear, nose and bone scaffolds that can be coated with cells to grow body parts. (Laurie Rubin)

What Lies Ahead for 3-D Printing?

The new technology promises a factory in every home—and a whole lot more

Smithsonian Magazine | Subscribe

(Continued from page 1)

***

That notion may thrill or horrify you, but the business model—on-demand printing of customized products—has significant advantages over traditional retailing models. If you can quickly and cheaply replace a broken cabinet handle by printing it at home (or scanning what you want and e-mailing those specs to a print shop), you needn’t travel to a store and stores needn’t keep millions of everything on hand. Shoe designs could be encoded as digital templates that could be manipulated and printed to perfectly fit any customer’s feet. Inventories would shrink, along with transportation, handling and storage costs. (Retail shops might even disappear if orders can be fulfilled directly by manufacturers who deliver to their customers’ homes.) And if supply lines are less dependent upon manufacturing centers abroad, they’re also less vulnerable to interruption.

In conventional manufacturing, every increase in design complexity costs money and time. With additive manufacturing, it’s as easy to print a simple tube as it is to print, say, a double helix wrapped in a spiral staircase draped by a spider web. High-resolution printers can even make products with gears and hinges.

Shapeways, a 3-D printing service, has built its business upon the assumption that a sizable demographic is willing to pay more for customized products than for mass-manufactured goods. The company fulfills design orders from tens of thousands of customers, or “community members,” at plants in the Netherlands and in Long Island City, New York, using printers that handle a variety of materials, including ceramics, sandstone, plastics and metals.

“We’re giving people access to million-dollar machines,” Elisa Richardson, Shapeways’ PR and social media manager, says. “We’re enabling them to run businesses through our company.” And what do those businesses sell? “Mostly cultish things, like Mine­craft models and Dungeons & Dragons dies.” Ah, I think: We’re back to the skull rings. “Are customers requesting prints of anything truly surprising?” I ask. Richardson pauses, then says, “It’s amazing how unsurprising the stuff we make is. It’s a doorknob or a crib part from a mom in suburbia.”

Clearly, 3-D printing is a boon to personal consumption, but the machines can potentially provide great social value as well. Imagine villages in the developing world printing parts for farm equipment or water pumps, and the solar panels that drive them. Imagine mobile production plants quickly deployed in disaster zones, printing out anything from arm splints to tent stakes.

In the future, suggests Peter Friedman, publisher of the Innovation Investment Journal, car dealers might include free printers with vehicles, so that owners can make their own parts, replacing and redesigning forever. “3-D printing is not just the future of making things you don’t have,” he wrote in a column. “It’s the future of making things that you do have immortal.”

One of those things might even be the human body—or at least some of its parts.

***

Carlos Kengla, a slim young man wearing statement eyeglasses and a four-inch-long soul patch, could easily pass for a hipster Maker of small-batch bourbon or bespoke bicycles. But Kengla has spent the last few years focusing on the production of ears, which he prints using cells that are taken from human ear cartilage and then propagated in the lab. Kengla’s fellow scientists at the Wake Forest Baptist Medical Center’s Institute for Regenerative Medicine are developing, in collaboration with other labs, processes to systematically print muscle tissue, skin, kidneys, cartilage and bones. For years, researchers have been building organs by hand, pipetting progenitor cells—which have the capacity to differentiate into specific types of cells—onto degradable scaffolds. They’ve had varying levels of success: Handmade bladders have been functioning in a handful of patients for many years; a miniature kidney implanted in a cow successfully excreted urine. But constructing organs by hand is laborious and plagued by human error. Rapid prototyping, with cartridges of cells squirting from a print head and guided by a computer, Kengla says, “is faster and more precise, to the micron. It allows us to place different types of cells in specific shapes and in intricate patterns.”

Tags

Comment on this Story

comments powered by Disqus