The Year Of Albert Einstein- page 3 | Science | Smithsonian
(Smithsonian National Museum of American History, Photographic History Collection)

The Year Of Albert Einstein

His dizzying discoveries in 1905 would forever change our understanding of the universe. Amid all the centennial hoopla, the trick is to separate the man from the math

Smithsonian Magazine | Subscribe

(Continued from page 2)

By then, Einstein was a professor at the University of Berlin, and the Great War was raging across the Continent. For word of Einstein’s achievement to reach the wider world of physicists, it was going to have to travel across enemy lines. Einstein carried his writings on general relativity to the Netherlands, and from there a physicist friend forwarded them across the North Sea to England, where they eventually reached Arthur Eddington, perhaps the only astronomer in the world with the political clout and scientific prominence sufficient to mobilize wartime resources and to put general relativity to the test.

Einstein had theorized that a solar eclipse offered a rare opportunity to observe gravity’s effect on light. As the daytime sky darkened, stars would become visible, and if indeed the sun’s gravity pulled on the passing light, then those stars near the edge of the sun would appear to be out of position by a degree his equations predicted precisely. Eddington rallied his nation’s scientific troops, and Great Britain’s Astronomer Royal, Sir Frank Dyson, petitioned his war-depleted government to send two expeditions to observe the total eclipse on May 29, 1919—one to Sobral, Brazil, the other to Príncipe, an island off the west coast of Africa.

In late September, Einstein got a telegram saying that the eclipse results matched his predictions. In October, he accepted the congratulations of the most prominent physicists on the Continent at a meeting in Amsterdam. Then he went home to Berlin. As far as he knew, he’d gotten his due.

“REVOLUTION IN SCIENCE,” the November 7 Times of London trumpeted. “New Theory of the Universe. Newtonian Ideas Overthrown.” The preceding day, Dyson had read aloud the eclipse results at a rare joint session of the Royal Society and the Royal Astronomical Society. The Royal Society president and the discoverer of the electron, J. J. Thomson, called Einstein’s theory, in a quote that raced around the world, “one of the most momentous, if not the most momentous, pronouncements of human thought.”

Only then, 14 years after Einstein’s miracle year, did the range of Einstein’s accomplishments begin to become common knowledge. Because the public learned about special relativity and general relativity at the same time, says Weart, the cult of Einstein coalesced quickly. “And then came quantum theory, and people went back and said, ‘Oh, yeah, Einstein did that, too.’ ”

An accurate count of articles about Einstein around the world in 1919—that first year of fame—is probably impossible; an essay contest sponsored by Scientific American for the best explanation of relativity in layperson’s terms attracted entries from more than 20 countries. “I have been so swamped with questions, invitations, challenges,” Einstein wrote in a letter during this period, “that I dream that I am burning in Hell and that the postman is the Devil eternally roaring at me, throwing new bundles of letters at my head because I have not yet answered the old ones.”

And all this celebrity, British astronomer W.J.S. Lockyer remarked, was for discoveries that “do not personally concern ordinary human beings; only astronomers are affected.” The depth of the response could be due only to the historical moment—the aftermath of the Great War. “Here was something which captured the imagination,” wrote Leopold Infeld, a Polish physicist and future collaborator of Einstein’s: “human eyes looking from an earth covered with graves and blood to the heavens covered with the stars.”

To many, Einstein became a symbol of postwar rapprochement and a return to reason. As Eddington wrote to him less than a month after the eclipse announcement, “For scientific relations between England and Germany this is the best thing that could have happened.” Even today, that interpretation continues to resonate. “During that war when much of humanity devoted itself to senseless destruction,” Holton has said, Einstein “revealed the outlines of the grand construction of the universe. That must count as one of the most moral acts of that time.”

But some critics of relativity argued that Einstein was merely one more anarchist fueling the funeral pyres of civilization. A professor of celestial mechanics at Columbia University worried in the New York Times in November 1919 that the impulse to “throw aside the well-tested theories upon which have been built the entire structure of modern scientific and mechanical development” was of a piece with “the war, the strikes, the Bolshevist uprisings.”

Einstein’s own political leanings further complicated people’s responses to his work. Avisceral, lifelong anti-authoritarian, he had renounced his German citizenship at age 16 rather than subject himself to mandatory military service. Now, in the nascent WeimarRepublic, Einstein, a Jew, found himself portrayed as a villain by swastika-sporting German nationalists and as a hero by internationalists. “This world is a curious madhouse,” Einstein wrote a friend. “At present every coachman and every waiter argues about whether the relativity theory is correct. Aperson’s conviction on this point depends on the political party he belongs to.” The “arguments” soon descended into death threats, and Einstein briefly fled Germany for a speaking tour of Japan. After Hitler rose to power in 1933, Einstein abandoned Germany for good. He accepted an appointment to the Institute for Advanced Study in Princeton, where he lived in a modest house on Mercer Street until his death from a ruptured abdominal aneurysm at age 76 in April 1955.


Comment on this Story

comments powered by Disqus