Dinosaurs Rule at SVP | Science | Smithsonian

Dinosaurs Rule at SVP

This year's SVP conference in Raleigh, North Carolina showcased a wealth of new dinosaur science

smithsonian.com

A reconstruction of Acrocanthosaurus at the North Carolina Museum of Natural Sciences in Raleigh, North Carolina, where this year’s SVP reception was held. Photo by Famille Wielosz-Caron, image from Wikipedia.

The annual Society of Vertebrate Paleontology meeting is a test of endurance. The science comes fast and furious in presentations, posters, hallway conversations and shouted exchanges over the din of the bar, with no consideration for how dehydrated, weary or hungover you might be. (Paleontologists study hard and party harder.) By the last day, my brain ached with details of flying Microraptor, bounding crocodiles, marsupial bone microstructure and dozens of other topics. When my friends at the conference asked “What did you like best?” after the technical sessions finally concluded, I was only capable of grunts and indelicate gestures.

I’ve had a day to settle down and process what I saw. And I know this–at SVP, dinosaurs rule. This isn’t to say that the conference is all about the Mesozoic celebrities. I saw many excellent talks on prehistoric fish, mammals, amphibians and other forms of ancient life. But, for a dinosaur fan, SVP offers a glut of dinosaur science from new discoveries about the beloved Tyrannosaurus rex to brand-new species that have only just come out of the ground.  Since this blog is called Dinosaur Tracking, I’m going to focus on some of the stand-out dinosaur science I saw during the meeting.

Montana State University graduate student Jade Simon’s presentation focused on giant Cretaceous dinosaur eggs found in Idaho, but the implications of the discovery were what really grabbed by attention. According to Simon and her collaborators, the pair of elongated, oblong eggs most closely match those found in the nests of oviraptorosaurs–beaked, feathered theropods like Citipati and eponymous Oviraptor. Yet the two eggs were so large that they suggested a dinosaur of prodigious size, on the scale of the 25-foot-long Gigantoraptor recently found in China. If Simon and coauthors are correct, then an enormous, as-yet-undiscovered oviraptorosaur strutted around Idaho around 100 million years ago. The next step–finding this fantastic creature’s bones.

Simon wasn’t the only researcher showing off dinosaur eggs. Just prior to her presentation, meeting attendees were treated to a pair of talks about dinosaur embryos found in the Late Jurassic rock of Portugal. These deposits are similar in age to those of the famous Morrison Formation of the American west and share many of the same types of dinosaurs. An embryo studied by Ricardo Araújo and coauthors appears to be a nascent Torvosaurus–a giant Jurassic carnivore that topped Allosaurus in bulk–and paleontologist Octávio Mateus followed with a skeletal embryo of Lourinhanosaurus, a mid-size theropod dinosaur found in the same formation. The embryo described by Mateus stood out because it was found by his parents–amateur paleontologists–in a nest of 100 eggs, including crocodile eggs mixed in with those of dinosaurs. Was this nest a communal site used by many mothers? The embryo and the nest it was found in will definitely help us better understand how some baby dinosaurs entered the world.

The SVP crowd also got treated to previews of various dinosaurs that are slowly making their way to press. Researcher Corwin Sullivan presented some scrappy evidence that a second giant tyrannosaur might have lived alongside the recently named Zhuchengtyrannus, and Nathan Smith showed off some new material from what may be two new species of sauropodomorph dinosaurs collected from Antarctica. Oliver Rauhut added to the list with a new theropod from Argentina that looks like a more archaic version of Allosaurus, and visitors to the poster session got to check out what might be a new species of Diabloceratops that Eric Lund and his colleagues have been working on. Most of the new dinosaur presentations followed the same format–where the fossils were found, how much of the skeleton was found, what sort of dinosaur the species is–but, in time, we should get fuller details of these dinosaurs in progress.

But not all the presentations at the conference were on new field discoveries. Increasingly, paleontologists are scanning, slicing and otherwise studying fossils in new ways, drawing ever more data about dinosaur biology from old bones. The first talk I walked into, by Eric Snively, reconstructed the neck musculature of Allosaurus for insights into the feeding behavior of this Jurassic hypercarnivore. As it turned out, Allosaurus probably had quite a strong neck and used this power to stabilized its flexed head while ripping flesh from prey–think of a giant, toothy falcon. In another session, Jason Bourke created virtual models to examine whether sauropod dinosaurs such as Camarasaurus and Diplodocus had their nasal openings on the tops of their heads–as was shown when I was a kid–or had nostrils further down the snout. The airflow models better fit the nose-at-end-of-snout model, although, as Bourke pointed out, there’s still quite a bit we don’t know about sauropod soft tissues.

Unsurprisingly, Tyrannosaurus got some love, too. Sara Burch reexamined the shoulders and forelimbs of old T. rex in an attempt to reconstruct the dinosaur’s musculature. Among other things, Burch found that the dinosaur’s arms underwent significant functional changes over time. The arms of the tyrant weren’t fading away, but modified for different uses than that of earlier relatives. What exactly the dinosaur was doing with its infamously small arms, though, we still don’t know.

Within the various new areas of research, though, dinosaur histology has been providing paleontologists with some of the most tantalizing details of prehistoric biology. My friend Carolyn Levitt presented her new research on the microstructure of Kosmoceratops and Utahceratops bones. These horned dinosaurs didn’t show any lines of arrested growth (LAGs) in their bones–rings thought to mark annual slowdowns in bone growth and often used to roughly age dinosaurs–while previously studied dinosaurs from more northern sites in North America do show these markers. This might mean that, like mammals, dinosaurs maintained high-running metabolisms but their growth was still influenced by environmental pressures, such as cold or dry seasons, in their surrounding environment. In a time of scarce resources, dinosaurs in highly seasonal habitats probably slowed their growth while those in lusher environments did not face the same pressures. Indeed, the dinosaurs with the most LAGs were the northernmost, while Utahceratops and Kosmoceratops were the southernmost sampled.

In a similar vein, a poster by Julie Reizner looked at the histology of the horned dinosaur Einiosaurus and what the microstructure details might say about the ceratopsid’s biology. The sampled dinosaurs, found in a rich bonebed, suggest that growth in Einiosaurus slowed at about three to five years of age, which might mean that these dinosaurs made a dash for reproductive maturity before their growth slowed. The fact that Reizner’s animals were predominately young and perished long before full skeletal maturity–or, in other words, still had some growing to do–is consistent with the idea that dinosaurs generally lived fast and died young.

And I would be remiss if I didn’t mention that there was an entire session devoted to Appalachia–a Late Cretaceous subcontinent formed when a shallow sea split North America in two, of which my former New Jersey home was a part. Paleontologists have made fascinating discoveries on the sister continent, Laramidia, but Appalachia has often been ignored given that we as yet knew little of the dinosaurs that lived there. Still, there is much to be learned by going back to the fragmentary and rare dinosaurs of that early eastern landmass. In addition to featuring Dryptosaurus, New Jersey’s fearsome tyrannosauroid, Stephen Brusatte reexamined the few remains of “Ornithomimusantiquus. This ostrich-like dinosaur probably belonged to a different genus and was not as primitive as previously thought. Shortly after Brusatte’s talk, Matthew Vavrek spoke about dinosaurs found in the high Arctic of Appalachia. Hadrosaurs, deinonychosaurs, tyrannosaurs and others lived along the northwestern coast of the continent and may help use better understand the differences between Appalachia and Laramidia. The most frustrating aspect of all of this is that the eastern dinosaurs are so poorly known–we need more dinosaurs.

The findings I mention here are just a scattered sampling of SVP, based upon the talks and posters I personally encountered. With three sessions going at the same time, it was utterly impossible to see everything. (Please chime in about your own favorite presentations in the comments.) Nevertheless, it was amazing to see paleontologists showing off new finds and going back to fossil collections for new information. We’re learning more, at a faster rate, than ever before. As multiple experts said to me during this conference, it’s a great time to be a paleontologist. The SVP dinosaur sessions left no doubt of that, and I can hardly wait for next year.

Thankfully, many other paleontologists have been sharing their thoughts about the conference through the #2012SVP Twitter hashtag and on their blogs. For an outsider’s perspective on the conference, see Bora Zivkovic’s rundown of the meeting, as well as Victoria Arbour’s summary of SVP silliness. Out of everything, though, I think this year’s attendees will all remember the conference center’s whoopee cushion chairs–caught on video by Casey Holliday’s lab. I hope that next year’s conference in Los Angeles is just as exhausting, and just as fun.

About Brian Switek
Brian Switek

Brian Switek is a freelance science writer specializing in evolution, paleontology, and natural history. He writes regularly for National Geographic's Phenomena blog as Laelaps.

Read more from this author |

Comment on this Story

comments powered by Disqus