Forensic Astronomer Solves Fine Arts Puzzles | Arts & Culture | Smithsonian
Current Issue
September 2014  magazine cover
Subscribe

Save 81% off the newsstand price!

Using shadows and the moon, Olson determined the moment Ansel Adams photographed Autumn Moon. When conditions recurred 57 years later, Olson was ready. (Russell Doescher)

Forensic Astronomer Solves Fine Arts Puzzles

Astrophysicist Don Olson breaks down the barriers between science and art by analyzing literature and paintings from the past

Smithsonian Magazine | Subscribe

In painter Edvard Munch's Girls on the Pier, three women lean against a railing facing a body of water in which houses are reflected. A peach-colored orb appears in the sky, but, curiously, casts no reflection in the water. Is it the Moon? The Sun? Is it imaginary? Does it matter?

To Donald Olson, an astrophysicist at Texas State University, the answer to the last question is an emphatic yes. Olson solves puzzles in literature, history and art using the tools of astronomy: charts, almanacs, painstaking calculations and computer programs that map ancient skies. He is perhaps the leading practitioner of what he calls "forensic astronomy." But computers and math can take him only so far.

For Girls on the Pier, Olson and his research partner, Texas State physicist Russell Doescher, traveled to Asgardstrand, Norway, the resort town where Munch made the painting in the summer of 1901. By mapping the area and studying old postcards, the pair determined the exact location of the original pier (which had been torn down), the heights of the houses and the spot where Munch likely stood. They then retraced the paths of the Sun and the Moon across the sky at the time Munch was there.

They concluded that the setting Sun did not appear in that section of sky at that time, but the Moon did. As for the missing reflection, it was not an artistic choice, as some art historians had proposed, but a matter of optics: from the artist's perspective, the row of houses blocked it.

Reactions to the findings have varied. "Olson makes points that art historians have managed to miss, such as how Munch was a very careful observer of the natural world," says art historian Reinhold Heller, author of the 1984 biography Munch: His Life and Work. But Sue Prideaux, author of 2005's Edvard Munch: Behind the Scream, offers only caustic praise. "I think that it's absolutely splendid that two such learned scientists as Don Olson and Russell Doescher bend their considerable brainpower to decoding Munch rather in the manner of crossword addicts. Photographic fidelity was never Munch's aim." Prideaux adds that Munch was interested in capturing the feeling of a moment and that objective details were of little consequence to him. As he himself once wrote, "Realism is concerned only with the external shell of nature....There are other things to be discovered, even broader avenues to be explored."

"You can't ruin a painting's mystique through technical analysis," Olson says. "It still has the same emotional impact. We are just separating the real from the unreal."

Olson, 61, began his scientific career exploring Einstein's theory of general relativity. He worked on computer simulations of the radiation near black holes and the distribution of galaxies. In other words, he spent his days inside a lab delving into topics that few people outside the lab understood. Then, one evening two decades ago, he and his wife, Marilynn, an English professor also at Texas State, attended a faculty party at which one of Marilynn's colleagues mentioned having difficulties with some passages in Chaucer's Canterbury Tales—they were loaded with astronomical references. Chaucer was no mere stargazer—he wrote an entire treatise on the astrolabe, an instrument used to calculate the positions of stars and planets—and sections of "The Franklin's Tale" deal in technical language with the prediction of a strange mammoth tide. Olson agreed to help decipher the passages. "I can remember exactly where I was standing in the room because that moment changed my life," he says of accepting that challenge.

Analyzing computer simulations of the positions of the Moon and Sun, Olson surmised that a phenomenon described by Chaucer—"And by his magic for a week or more / It seemed the rocks were gone; he'd cleared the shore"—occurred in 1340. That year, when the Sun and Moon were at their closest points to Earth, they lined up in an eclipse of the Sun; their combined gravity caused extremely high tides off the coast of Brittany.

"Most people see liberal arts on one side and sciences on the other, but I get to break those barriers down," Olson says, though he admits that he now gives relativity relatively short shrift. "I would love to know what happened before the Big Bang," he says, "but I don't think I'm smart enough to figure that out." He adds that he prefers "problems that are challenging but solvable."

Not long after Olson dealt with Chaucer, James Pohl, a history professor at Texas State and a former marine, came to him with a different sort of problem. Pohl had been studying the November 1943 Allied assault on the Pacific island of Tarawa, in which U.S. Marine landing craft were unexpectedly grounded on a coral reef about 600 yards offshore. The marines had to disembark and wade to the beach while exposed to heavy enemy fire. More than 1,000 were killed. Pohl wanted Olson to explain what had gone wrong.

Tags

Comment on this Story

comments powered by Disqus