The Planet Hunters
Nevermind the demotion of Pluto to a dwarf planet. Astronomers have found about 200 planets orbiting other stars, and they say it's only a matter of time before they discover another Earth.
- By Robert Irion
- Photographs by Peter Menzel
- Smithsonian magazine, October 2006, Subscribe
(Page 3 of 4)
The more oddly shaped and oddly spaced orbits that astronomers find, the more they realize that the natural process of planet formation invites chaos and disorder. "It became clear that our solar system, with its beautiful dynamics and architecture, was much more stable than those around other stars," says theoretical astrophysicist Greg Laughlin of the University of California at Santa Cruz, who collaborates with Marcy and Butler's team. Trying to figure out how new planets acquired their weird paths has been a daunting task. Laughlin designs computer models of exoplanet orbits to try to re-create the planets' histories and predict their fates. He focuses on the role of gravity in wreaking havoc. For instance, when a big planet moves on an eccentric orbit, its gravity can act like a slingshot and fling smaller nearby worlds. "In some of these systems," Laughlin says, "if you insert an Earth-like planet in a habitable orbit, it can literally be ejected within weeks."
Interactions among planets may be common in the cosmos, Laughlin and his colleagues say. Almost 20 stars are known to have more than one planet orbiting around them, and some of these sibling exoplanets are locked into a dance called a "resonance." For instance, one planet circling a star called Gliese 876 takes 30 days to orbit, while another planet takes almost exactly twice as long. Laughlin's calculations show that their mutual gravitational pull preserves a stable, clocklike arrangement between the two planets.
Resonances are strong clues that the planets migrated far from their birthplaces. The disk of dust and gas that spawns embryonic planets has a gravity of its own. The disk drags on the planets, gradually pulling them inward toward the star or, in some cases, forcing them outward. As this migration goes on for hundreds of thousands of years, some exoplanets become trapped in resonances with their neighbors. When big planets end up in close quarters, they whip each other around and create some of the eccentric orbits seen by the team. At least, that's the current best guess.
Other planets are not long for this world. Laughlin's computer models suggest that some of the planets closest to their stars will plunge into them as more distant planets bully their way into smaller orbits, perhaps in a matter of hundreds of thousands of years. This research into distant solar systems has raised a fascinating scenario about our own solar system. Some astronomers theorize that Venus, Earth and Mars are "second-generation" planets, successors to earlier bodies that were born closer to the sun and migrated inward until they were consumed.
Does all the observed chaos in the universe portend dire consequences for small rocky planets? Not at all, Laughlin says. The technique of measuring the back-and-forth wobbles of stars, sensitive as it is, would have to be about ten times finer to reveal objects the size of Earth. But satellite telescopes scheduled for launch in the next few years might be able to detect "shadows" of alien earths as the small planets pass in front of their stars. Laughlin predicts the satellites will find such bodies in droves, even around stars where no large planets have yet been seen. "It's very likely that [sun-like] stars are accompanied by terrestrial planets," he says. "My intuitive sense is that our solar system is not uncommon at all."
Berkeley's Geoff Marcy agrees, because he says every star is born with enough raw material around it to create many planets. Lots of solid planets like Earth should form, he says, as dust coalesces into pebbles, which collide again and again to make asteroids and moons and planets. "Maybe Jupiters are rare," he says, "but rocky planets almost certainly are common. I just don't see how making an Earth could be hard."
The small exoplanet recently detected by Marcy and Butler's team supports that view. They found it while monitoring the two resonant planets in the Gliese 876 system, which is 15 light-years away. Something was exerting subtle extra tugs on the planets' orbits, and the best explanation for that is a third planet perhaps 7.5 times as massive as Earth. Given its size, the planet is likely rocky, like Earth, rather than a gas giant. The discovery was a major step toward answering the question on everyone's mind: Can we find potential habitats for life elsewhere?
Astronomers were hoping that question would be answered by a NASA satellite mission called Terrestrial Planet Finder. It was supposed to go beyond detecting exoplanets: it would take images of the most tantalizing exoplanets and analyze their atmospheres. But early this year, NASA put the mission on hold, largely because of budget overruns from the space station and the space shuttle and the expected cost of the plan to send people to Mars.
Single Page « Previous 1 2 3 4 Next »
Subscribe now for more of Smithsonian's coverage on history, science and nature.









Comments