Drones are Ready for Takeoff

Will unmanned aerial vehicles—drones—soon take civilian passengers on pilotless flights?

Engineer Tad McGeer, at his company's headquarters near Bingen, Washington, played a key role in getting the civilian drone industry off the ground. (Robbie McClaran)
Smithsonian Magazine | Subscribe

(Continued from page 2)

The achievement attracted potential customers in the tuna industry, which had suffered a series of deadly crashes of fish-spotting helicopters. The Pentagon also “began to make cooing noises,” says McGeer; drones had been doing military work almost as long as there had been aircraft, with uneven results.

McGeer and von Flotow decided to focus on tuna. “Tad has a basic conflict with the Eisenhower military-industrial complex thing,” says Juris Vagners, a colleague who teaches at the University of Washington. “He wants to do civilian stuff.” For the tuna industry, McGeer and von Flotow developed the SeaScan, a drone with a camera turret. They also had to figure out how to make takeoff and landing user-friendly for fishermen working on the deck of a small ship. For the launch, they devised a catapult powered by a Sears, Roebuck air compressor, with a release mechanism triggered by a man yanking a rope. Recovery was more complicated.

McGeer eventually hit on the idea of flying one wing of the drone into a vertical rope, with the rope quickly slipping out along the leading edge of the wing to snag on a hook at the tip. Cutting the rope with the propeller wasn’t an issue because the prop is mounted at the tail, safely out of the way. The problem was developing a hook that would cause the plane to hang in midair, rather than slide down the rope and smash into the ground.

They tested mechanisms on von Flotow’s farm, using a plywood model of a SeaScan at the end of a five-foot rope. “I stood on a trailer and spun it around like a hammer thrower,” recalls Cory Roeseler, who does what he calls “grunt engineering” for McGeer and von Flotow. But instead of releasing it like an Olympic athlete, he sidled the model over to a vertical line stretched down the corner of a barn. “When you hit the line, you can figure out which hooks snag and which hooks fail. You can do that in an afternoon. Good ideas rise to the top quickly if you have some plywood, a cordless drill and some good thinkers.”

The “skyhook” technology they developed in this fashion is now used a thousand times a month, on land and sea, almost always without incident. But it is still a spectacle. The drone circles for its approach, then comes whining in at about 50 miles an hour. GPS devices on the skyhook and the plane communicate, like air traffic control talking to a pilot, and the plane adjusts to an accuracy of a half-inch or less. Then it slams into the rope and snags 25 feet in the air, causing the skyhook to buck and sway as in an earthquake. “That’s violent,” says a visitor seeing it for the first time. An engineer’s view, says McGeer, with a proud, parental smile, is, “Just violent enough.”

The changes McGeer came up with to attract the tuna industry also suited the military. Steve Sliwa, a college friend McGeer brought in to run Insitu’s business side, was soon steering the company into a closer alliance with Boeing for defense work. McGeer’s SeaScan became the ScanEagle, a 40-pound surveillance drone. During the Battle of Fallujah in 2004, the ScanEagle spotted would-be assailants and sent real-time video to troops on the ground. Military demand rose rapidly. There are now 18 ScanEagles aloft at any moment, according to Insitu, mostly in Iraq or Afghanistan, and the company is the largest employer in the Columbia River Gorge, where the boast is sometimes heard that while the Predator costs millions and works for generals, a ScanEagle costs about $100,000 and works for gunnery sergeants.

The ScanEagle carries no weapons, but its camera helps target military strikes, and videos sent back to Insitu sometimes showed Iraqis being engulfed in flames. McGeer struggled with what he was seeing, then quit the company in 2005. Three years later, Boeing purchased Insitu for about $400 million. According to von Flotow, he and McGeer split about 10 percent of the total. McGeer remains conflicted about it. “If you’re a dead Iraqi,” he says, “you might not think it worked out all that well.”

It’s a sentiment that echoes around the gorge, but quietly. Between them, Hood River and Bingen are home to fewer than 8,000 people, and neighbors inevitably run into one another at Brian’s Pourhouse or the Wednesday night Secret Salsa dance club. Nobody wants to blame the conduct of war on neighbors who build the hardware. “It would be like blaming a bank teller for the financial crisis,” says one local who works in the industry. Von Flotow acknowledges that “nobody’s happy about it.” Then he adds: “Most engineering nerds are basically apolitical.”

The question everyone asks is how quickly unmanned technology can make the leap into the civilian market. The potential seems limitless—handling routine monitoring of pipelines and power lines, for instance, or gathering geomagnetic data about natural resources (a job that entails flying hundreds of miles in a straight line, at low altitude, then moving 50 yards over and flying straight back). Drones could help farmers monitor crops in distant fields, allow real estate developers to perform simple construction jobs in remote or difficult locations or enable environmentalists to spot polluters.

But these applications face major regulatory issues. Drone proponents say that the FAA has limited the domestic market because of safety questions and that the State Department has shut off the international market by restricting the export of defense technologies. New questions about privacy and civil liberties are also certain to arise. For instance, Aurora Flight Sciences, a Virginia firm, is testing a drone to conduct “wide area surveillance” over cities. Where a human observer might detect nothing, says Tom Clancy, the company’s chief technology officer, computer algorithms can “extract behaviors or patterns of movement” suggesting ill intent—for instance, a car passing a bank four times before circling back and stopping. Would a court consider that probable cause for a police search?

About Richard Conniff
Richard Conniff

Richard Conniff, a Smithsonian contributor since 1982, is the author of seven books about human and animal behavior.

Read more from this author

Comment on this Story

comments powered by Disqus