Birdbrain Breakthrough
Startling evidence that the human brain can grow new nerves began with unlikely studies of birdsong
- By Edwin Kiester, Jr., and William Kiester
- Smithsonian magazine, June 2002, Subscribe
The barn where he works is in the horse country of Millbrook, New York, but it echoes with trills, tweets and obbligatos—the raucous music of more than a thousand caged canaries and finches. "Hear that one singing his heart out?" Fernando Nottebohm asks. "He has more than a dozen songs. He’s telling the males, 'This is my territory.' He’s telling the females, 'Hey, look at me.'"
Deconstructing birdsong may seem an unlikely way to shake up biology. But Nottebohm’s research has shattered the belief that a brain gets its quota of nerve cells shortly after birth and stands by helplessly as one by one they die—a "fact" drummed into every schoolkid’s skull. On the contrary, the often-rumpled Argentina-born biologist demonstrated two decades ago that the brain of a male songbird grows fresh nerve cells in the fall to replace those that die off in summer.
The findings were shocking, and scientists voiced skepticism that the adult human brain had the same knack for regeneration. "Read my lips: no new neurons," quipped Pasko Rakic, a Yale University neuroscientist doubtful that a person, like a bird, could grow new neurons just to learn a song.
Yet, inspired by Nottebohm’s work, researchers went on to find that other adult animals—including human beings—are indeed capable of producing new brain cells. And in February, scientists reported for the first time that brand-new nerves in adult mouse brains appeared to conduct impulses—a finding that addressed lingering concerns that newly formed adult neurons might not function. Though such evidence is preliminary, scientists believe that this growing body of research will yield insights into how people learn and remember. Also, studying neurogenesis, or nerve growth, may lead them to better understand, and perhaps treat, devastating diseases such as Parkinson’s and Alzheimer’s, caused by wasted nerves in the brain.
Few would have predicted that canary courtship would lead to such a breakthrough. Nottebohm’s bird studies "opened our eyes that the adult brain does change and develops new cells throughout life," says neurobiologist Fred Gage of the Salk Institute in La Jolla, California, whose lab recently found evidence of nerve cell regrowth in the human brain.
Nottebohm’s research has achieved renown in biology and beyond. A scientist who advances an unconventional view and is later vindicated makes for compelling drama, presenting a hero who appeals to the rebel in us and a cautionary lesson to stay open-minded. Yet Nottebohm prefers being a revolutionary to a statesman. "Once I was in the 5 or 10 percent of scientists who believed in neurogenesis," he says. "Now 95 percent accept that position. I rather liked it better being in the minority."
He has been a bird lover since his boyhood, in Buenos Aires. "Listening to birds was sort of my hobby," he says. "Other boys had cars, I had birds. I liked to try to identify them by their songs." He obtained a doctorate at the University of California at Berkeley—yes, studying birds—before moving to Rockefeller University.
A key moment came in 1981 when he showed that the volume of the part of a male canary’s brain that controls song-making changes seasonally. It peaks in the spring, when the need to mate demands the most of a suitor’s musical ability, and shrinks in the summer. It then starts expanding again in the fall—a time to learn and rehearse new tunes. Those fluctuations, Nottebohm and his coworkers later showed, reflected the death and also birth of thousands of neurons. "Astonishing," Gage and a colleague recently wrote.
Subscribe now for more of Smithsonian's coverage on history, science and nature.









Comments (2)
It's interesting to read this again six years on. How much has changed since 2002 in the world of neuroscience. The ability for the adult brain to grow new nerve cells is now commonly accepted; each week it seems there's a new study on how and why neurogenesis in the adult brain occurs, and even how we can exploit it to our advantage.
For instance, a study last year on Improving Fluid Intelligence by Training Working Memory (PNAS April 2008) even recorded increases in mental agility (fluid intelligence) of more than 40% after 19 days of focused brain training.
Martin
www.mindsparke.com
Posted by Martin Walker on September 17,2009 | 12:34 PM
So no need to stop binge drinking then?
Posted by Al Coholic on September 16,2009 | 07:24 PM