A Little Independent Energy Experiment on the Prairie- page 2 | Science | Smithsonian
Current Issue
September 2014  magazine cover
Subscribe

Save 81% off the newsstand price!

Madelia, Minnesota is a small town with a big plan to produce fuel made from local materials for local markets. (Maggie Koerth-Baker)

A Little Independent Energy Experiment on the Prairie

If you can fight your way through the dirt storms of Madelia, Minnesota, you may be able to find the future of renewable energy

smithsonian.com

(Continued from page 1)

Make no mistake, the Madelia Model is about biofuel, but it is not about ethanol. This part of the country needs less corn, not more, Meschke told me. Right now, corn and, to a lesser extent, soybeans are pretty much the only crops being grown. Corn takes up more than 45 percent of all available farmland in southern Minnesota, as well as in parts of Nebraska, Indiana, and Illinois—and pretty much every square inch of Iowa. In those same areas, depending on the county, soybeans chalk up anywhere from 15 percent to more than 45 percent of farmland.

From the outside, this system can seem a little illogical, but it’s simply specialization. It’s no different from a factory making only shoes instead of a closet full of different clothing products. It’s easier to become an expert on two crops, rather than on 20, and you can grow more for less of an up-front investment. Also, frankly, corn and soybeans pay off. There’s a big industrial demand for those plants that broccoli can’t match. When demand falls, there are also ample subsidies to guarantee that farmers make at least a certain price for their crops, with government money picking up the market’s slack.

The downside is that these two crops, and particularly corn, aren’t as great for soil and water quality as they are for farmers’ bank accounts. Corn is a greedy plant that needs a surprising amount of attention to grow. Mainly, corn needs fertilizer and lots of it. In 2007, U.S. corn farmers used more than 5 million tons of nitrogenous fertilizer. Yet while corn may have a big appetite for plant food, it’s about as efficient at “eating” as a toddler with a bowl of spaghetti. You know the kid will end up wearing as much food as she eats, and a corn field will often use as little as half of the fertilizer it’s fed. The rest sits on the soil until it’s washed away into the nearest creek by rain or irrigation.

Corn grows in tidy little rows—with tidy little root systems tucked underneath. In late May, a cornfield is still a sea of dirt, speckled with green shoots not much bigger than your average bunch of basil. When the wind begins to blow, that topsoil doesn’t stand a chance. Since the 19th-century dawn of corn farming, some eight vertical inches of Iowa have gone missing. For people who make their living on what they can grow in topsoil, this is very, very bad. The long-term professional danger to Midwestern farmers is no clearer than when one is picking particles of valuable topsoil out of one’s skin, hair and teeth. The dust storms I’d driven through on my way into Madelia were a product of corn farming. My car was caked in the lost future of U.S. agriculture.

Meschke thought she’d found the key to saving America’s prairie farmland: Third Crops. That was her term for, basically, anything that isn’t corn or soybeans. There was extra credit if it’s native and perennial. Her idea wasn’t unique. Some farmers already use a Third Crop system by rotating fields through corn first, soybeans second, and alfalfa or hay third, which helps keep the soil healthy and reduces the need for fertilizer. Yet Meschke wanted to take this further. First, she promoted planting a wider variety of Third Crops. When a lot of different plants are grown in one region, it becomes less of a Club Med for species-specific pests, which means a decreased need for farmers to buy expensive pesticides. Meschke also wanted farmers to put Third Crops on some land full time, not only in rotation schedules. Land that’s severely nutrient-deficient, land that’s sloped or has a lot of loose topsoil, and land that sits alongside creeks and drainage ditches could all benefit from the dense, water- and soil-retaining root systems of perennial plants.

The trouble for Meschke was how to make Third Crops profitable enough that farmers actually wanted to grow them. The perennials native to Minnesota’s prairie—mostly, various species of tall grasses—are fairly cheap to grow and are ecologically friendly, because they don’t need much fertilizer or irrigation, but they also aren’t worth very much. This was where Meschke’s interest in water quality and soil health dovetailed into her interest in local energy. There’s not really any money to be made in growing Third Crops for topsoil protection or to clean up a polluted stream. Meanwhile, large-scale biofuel production—which currently means corn ethanol—only adds to those ecological problems. You could grow native grasses and turn them into fuel. The technology already exists. In fact, there are many different ways to do the job. The problem is that so far, nobody’s been able to make any of those methods financially viable on a large scale—the kind of system that would allow big companies in the Midwest to produce barrels and barrels of fuel for use all across the country. To most people, that means corn-less biofuel simply isn’t ready for the real world yet. Linda Meschke, on the other hand, looked at that same problem and asked, “Why should people at Madelia worry about whether Florida has enough energy?”

A small refinery that could pay farmers for Third Crops, create some jobs for non-farmers, and produce enough fuel to sell within this one little region of Minnesota would do the trick, Meschke thought. Especially if gasoline prices continued to rise. If that wasn’t viable, she said, you could go smaller still. Even the opportunity to make fuel for their own use—a chance to save money, rather than earn it—could be enough to get at least a few more farmers growing Third Crops. Meschke supports local energy because it’s on the scale that prairie grass biofuel seems to work at, and because right now it offers the best opportunities to set the Madelia Model into motion.

Yet it’s not risk-free. The farms that surround Madelia are large, and they’re commodity-oriented, not a home for boutique cabbages. That doesn’t mean they’re corporate monoliths, though. These farms are family owned, by families who’ve lived in the region for generations. Sure, they might grow only corn. Over the decades, they might have absorbed acreage that used to house a more populous patchwork of smaller farms, but farming is still a family business and a very risk-averse family business at that. It would take three or four years, Meschke told me, to get a perennial Third Crop, such as prairie grass, established and ready for its first harvest. If a market for the grass failed to materialize, farmers would be left with a very pretty field and a big chunk of debt.

On the other hand, if the Madelia Model succeeded beyond everyone’s wildest dreams—if Madelia and the region around it became self-sufficient in fuel—it would drastically change the lives of the people who lived here. Success would change local farming. There would be an economic pressure to start growing new crops that had different needs and different growth cycles. Success would change life in Madelia. There would be new jobs, new businesses, and more consumer choices. Madelia would also be a busier town, with new residents who might be a little better off. Change, like cow pies, happens. How it happened here would depend a lot on whether average Madelians got involved in shaping the future of their community. Their silence on the matter is deafening.

Every fourth Friday at 3 p.m., Meschke told me, the city holds an open meeting designed to bring Madelia Model planners and the public together. It is a noble plan—and mostly theoretical. The meetings happen, but no more than a dozen people ever turn up.

Tags

Comment on this Story

comments powered by Disqus