What the Discovery of Hundreds of New Planets Means for Astronomy—and Philosophy
New telescopes are allowing us to look at space more accurately than ever – and what they uncover could change our world
- By Timothy Ferris
- Smithsonian magazine, September 2012, Subscribe
(Page 3 of 3)
Stars and planets form together, congealing gravitationally into a rotating disk of gas and dust with the proto-star sitting at the center like the yolk of an egg. Once the star ignites, a constant blast of particles blown off its surface sweeps light gasses like hydrogen and helium out of the inner part of the disk. Hence the Sun’s inner planets (like Earth) are rocky while the outer planets (like Jupiter) contain light gasses aplenty. That means the hot Jupiters orbiting close to many stars could not have formed there, but must instead have originated farther out and subsequently migrated to their present locations. Such migrations could have been caused by interactions among planets or by the tidal pull of passing stars and nebulae.
Planets not only change orbits much more often than had been thought, but can even be hurled out of their systems altogether, to wander ever after in the cold and darkness of interstellar space. A recent NASA study estimates that our galaxy contains more “free floating” planets than stars. That would put the number of benighted, exiled worlds into the hundreds of billions.
All known phenomena reside somewhere between total orderliness, which would make their behavior predictable in every detail, and utter chaos, which would make them utterly unpredictable. Prior to the rise of science, nature seemed to be mostly chaotic. Unable to predict most natural phenomena, people relegated even the appearances of comets and thunderstorms to what legal documents still refer to as “acts of God.” Once science got going, philosophers, impressed by its predictive power, went to the opposite extreme and began imagining that everything was completely orderly. Science came to be haunted by the specter of “strict determinism”—the notion that if the precise locations and motions of every atom in a system were known, one could reliably calculate its future in every detail. Since human beings are made of atoms, strict determinism implied that humans are but living robots, their every thought and action predetermined at the beginning of time.
The behavior of the solar system seemed to support strict determinism. The picture of an orderly “clockwork universe,” as predictable as a mechanical orrery, dates back to Isaac Newton’s working out the dynamical laws governing the motions of the Sun’s planets. When the mathematician Pierre-Simon de Laplace refined Newton’s clockwork and ran it backward to accurately “predict” a conjunction of Saturn with the star Gamma Virginis that Babylonian stargazers had observed in 228 B.C., it began to seem reasonable to conclude that every single event, even one’s own thoughts, were part of a strictly deterministic cosmic clockwork.
Yet Newton himself had doubts about that. He appreciated that although the Sun dominates its gravitational environment, the planets exert small but persistent gravitational forces on one another. He suspected that these interactions might sooner or later upset the solar system’s clockwork predictability, but he was unable to calculate their effects. “To define these motions by exact laws admitting of easy calculation exceeds, if I am not mistaken, the force of any human mind,” he wrote.
He was right. It took the power of modern computation to reveal that all planetary systems, even those as seemingly serene as the Sun’s, are infected by potential chaos. Computer simulations indicate, for instance, that Jupiter’s gravity has repeatedly altered the polar axis of Mars and may one day pull Mercury into an orbit so elliptical that it might collide with Venus or Earth. (Even a near miss between Mercury and Earth would generate enough tidal friction to transform both planets into balls of lava.) Troubled by his intimations of chaos, Newton wondered aloud whether God might have had to intervene from time to time to keep the solar system running so smoothly. Today it might be said that only an act of God could save strict determinism.
Bidding good night to planet-bearing stars that increasingly looked like ports of call, I closed up the observatory and paused to scratch a few numbers on a scrap of paper. NASA estimates that the Milky Way galaxy contains at least 100 billion planets, not counting the lonely free-floaters. If the “instrumental and technical improvements” I read about back in 1959 eventually attain such a state of excellence that astronomers are finding new planets every minute, day and night, they would be at it for 100,000 years before they’d mapped half the planets in our galaxy. And ours is one among more than 100 billion galaxies.
In short, we stand at the onset of a great age of adventure—and always shall, so long as we keep doing science.
Subscribe now for more of Smithsonian's coverage on history, science and nature.









Comments (4)
wow
Posted by ken on December 4,2012 | 10:52 AM
I find this is beyond imagination! Keep up the excellent work.
Posted by Julius Kogo (Mr) on October 18,2012 | 02:15 PM
How does one observe the planet's transit where the planet's orbit plane is not close to the plane of the observation?
Posted by Joe P on October 11,2012 | 09:18 PM
it's amazing to think that what we are seeing in the sky now is like looking back in time many ,many years ago!
Posted by megan on October 9,2012 | 08:13 PM