What the Discovery of Hundreds of New Planets Means for Astronomy—and Philosophy
New telescopes are allowing us to look at space more accurately than ever – and what they uncover could change our world
- By Timothy Ferris
- Smithsonian magazine, September 2012, Subscribe
(Page 2 of 3)
Both approaches are better at finding massive planets orbiting close to their stars—the so-called “hot Jupiters”—than earthlike planets in earthlike orbits around sunlike stars. So it may be some time before planets that closely resemble Earth are identified, and even longer before astronomers can capture their meager, reflected light and interrogate it for the chemical signatures of life as we know it.
But it is the nature of exploration to find things different from what one expected to find, and the exoplanet hunters have unveiled planets quite unlike any previously envisioned. One is GJ 1214b, a “water world” more than twice Earth’s diameter that whips around a red dwarf star 40 light-years from Earth every 38 hours, its steamy surface boiling at an oven-hot 446 degrees Fahrenheit. The sunlike star Kepler-20, some 950 light-years away, has five planets, two of them comparable in mass to Earth, all packed into orbits smaller than Mercury’s around the Sun. WASP-17b is a big wisp of a world, about twice the size of Jupiter but only a tenth as dense, orbiting a star a thousand light-years from us.
Back in 1959, astronomers were still debating whether a planet could orbit a binary star, a pair of stars that orbit each other. The answer turns out to be yes: Three such planetary systems have been found. The planets have twin suns in their skies, like Tatooine in Star Wars.
Such exotica aside, the planet-hunting enterprise calls attention to what the stellar population of our galaxy is really like, as opposed to the initial impressions one acquires through casual stargazing. The constellations we learn as children—Orion the Hunter, Canis Major the Big Dog, Lyra the Lyre—are made memorable by their brightest stars, giants like Rigel, Sirius and Vega. But such big, bright stars, though conspicuous, are rare: For every giant like Sirius there are a dozen or so sunlike stars and an astounding 100 million dim dwarf stars. The disparity arises because dwarf stars form much more abundantly than do giants, and last a lot longer. Giants burn so furiously that they can run out of fuel within millions of years. Middleweight stars like the Sun last around ten billion years. Dwarf stars burn their fuel frugally enough to make them effectively immortal: So far as astronomers can tell, no M-class dwarf star that ever formed has yet stopped shining.
In all, roughly 80 percent of the stars in our galaxy are dwarfs. So isn’t it more likely that life would be found on a dwarf-star planet than on a planet orbiting a much more rare sunlike star?
Perhaps, but dwarfs are so dim that their habitable zones—the “Goldilocks” region, cool enough that water won’t boil off yet warm enough that water isn’t permanently frozen—are necessarily quite close to the star, for the same reason that campers must huddle closer to a small fire than to a roaring blaze. The habitable zones of dwarf stars can be so cramped that planets orbiting there are virtually skimming the star’s surface, whirling through “years” lasting only days or hours. If you grew up on, say, Kepler-42c, which orbits in the habitable zone of a dwarf star only 13 percent as massive as the Sun, your birthday would roll around every ten hours and 53 minutes.
Life on such a world could be chancy. Even small dwarf stars, with surface temperatures not much hotter than a cup of coffee, can produce sterilizing X-ray flares as powerful as the Sun’s. If you were vacationing on KOI-961c and its star flared, the radiation might well kill you before you could reach shelter. Planets so close to their stars may also become gravitationally locked, so that one side is baked dry while the other freezes.
And even if you were content with your planet’s orbit, what are the chances of its remaining there? We terrestrials live in the habitable zone of a rather orderly system whose planets evidently have plodded along in pretty much the same old orbits for a very long time. But many exoplanetary systems are proving to be more chaotic. There, astronomers are finding planets that must somehow have migrated to their present locations from quite different original orbits.
Single Page « Previous 1 2 3 Next »
Subscribe now for more of Smithsonian's coverage on history, science and nature.









Comments (4)
wow
Posted by ken on December 4,2012 | 10:52 AM
I find this is beyond imagination! Keep up the excellent work.
Posted by Julius Kogo (Mr) on October 18,2012 | 02:15 PM
How does one observe the planet's transit where the planet's orbit plane is not close to the plane of the observation?
Posted by Joe P on October 11,2012 | 09:18 PM
it's amazing to think that what we are seeing in the sky now is like looking back in time many ,many years ago!
Posted by megan on October 9,2012 | 08:13 PM