• Smithsonian
    Institution
  • Travel
    With Us
  • Smithsonian
    Store
  • Smithsonian
    Channel
  • goSmithsonian
    Visitors Guide
  • Air & Space
    magazine

Smithsonian.com

  • Subscribe
  • History & Archaeology
  • Science
  • Ideas & Innovations
  • Arts & Culture
  • Travel & Food
  • At the Smithsonian
  • Photos
  • Videos
  • Games
  • Shop
  • Human Behavior
  • Mind & Body
  • Our Planet
  • Technology
  • Space
  • Wildlife
  • Art Meets Science
  • Science & Nature

The Origins of Life

A mineralogist believes he's discovered how life's early building blocks connected four billion years ago

| | | Reddit | Digg | Stumble | Email |
  • By Helen Fields
  • Photographs by Amanda Lucidon
  • Smithsonian magazine, October 2010, Subscribe
View More Photos »
Bob Hazen
A fossil collector since childhood, Bob Hazen has come up with new scenarios for life's beginnings on earth billions of years ago. (Amanda Lucidon)

Photo Gallery (1/7)

Bob Hazen in lab

Explore more photos from the story


Video Gallery

Discovering Secrets on the Seashore

Related Links

  • Robert M. Hazen laboratory

Related Books

Genesis: The Scientific Quest for Life's Origins

by Robert M. Hazen
Joseph Henry Press, 2005

More from Smithsonian.com

  • The Secrets Within Cosmic Dust
  • On the Origin of a Theory
  • Subterranean Surprises

A hilly green campus in Washington, D.C. houses two departments of the Carnegie Institution for Science: the Geophysical Laboratory and the quaintly named Department of Terrestrial Magnetism. When the institution was founded, in 1902, measuring the earth’s magnetic field was a pressing scientific need for makers of nautical maps. Now, the people who work here—people like Bob Hazen—have more fundamental concerns. Hazen and his colleagues are using the institution’s “pressure bombs”—breadbox-size metal cylinders that squeeze and heat minerals to the insanely high temperatures and pressures found inside the earth—to decipher nothing less than the origins of life.

Hazen, a mineralogist, is investigating how the first organic chemicals—the kind found in living things—formed and then found each other nearly four billion years ago. He began this research in 1996, about two decades after scientists discovered hydrothermal vents—cracks in the deep ocean floor where water is heated to hundreds of degrees Fahrenheit by molten rock. The vents fuel strange underwater ecosystems inhabited by giant worms, blind shrimp and sulfur-eating bacteria. Hazen and his colleagues believed the complex, high-pressure vent environment—with rich mineral deposits and fissures spewing hot water into cold—might be where life began.

Hazen realized he could use the pressure bomb to test this theory. The device (technically known as an “internally heated, gas media pressure vessel”) is like a super-high-powered kitchen pressure cooker, producing temperatures exceeding 1,800 degrees and pressures up to 10,000 times that of the atmosphere at sea level. (If something were to go wrong, the ensuing explosion could take out a good part of the lab building; the operator runs the pressure bomb from behind an armored barrier.)

In his first experiment with the device, Hazen encased a few milligrams of water, an organic chemical called pyruvate and a powder that produces carbon dioxide all in a tiny capsule made of gold (which does not react with the chemicals inside) that he had welded himself. He put three capsules into the pressure bomb at 480 degrees and 2,000 atmospheres. And then he went to lunch. When he took the capsules out two hours later, the contents had turned into tens of thousands of different compounds. In later experiments, he combined nitrogen, ammonia and other molecules plausibly present on the early earth. In these experiments, Hazen and his colleagues created all sorts of organic molecules, including amino acids and sugars—the stuff of life.

Hazen’s experiments marked a turning point. Before them, origins-of-life research had been guided by a scenario scripted in 1871 by Charles Darwin himself: “But if (and oh! what a big if!) we could conceive in some warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, etc., present, that a proteine compound was chemically formed ready to undergo still more complex changes....”

In 1952, Stanley Miller, a graduate student in chemistry at the University of Chicago, attempted to create Darwin’s dream. Miller set up a container holding water (representing the early ocean) connected by glass tubes to one containing ammonia, methane and hydrogen—a mixture scientists of the day thought approximated the early atmosphere. A flame heated the water, sending vapor upward. In the atmosphere flask, electric sparks simulated lightning. The experiment was such a long shot that Miller’s adviser, Harold Urey, thought it a waste of time. But over the next few days, the water turned deep red. Miller had created a broth of amino acids.

Forty-four years later, Bob Hazen’s pressure bomb experiments would show that not just lightning storms but also hydrothermal vents potentially could have sparked life. His work soon led him to a more surprising conclusion: the basic molecules of life, it turns out, are able to form in all sorts of places: near hydrothermal vents, volcanoes, even on meteorites. Cracking open space rocks, astrobiologists have discovered amino acids, compounds similar to sugars and fatty acids, and nucleobases found in RNA and DNA. So it’s even possible that some of the first building blocks of life on earth came from outer space.

Hazen’s findings came at an auspicious time. “A few years before, we would have been laughed out of the origins-of-life community,” he says. But NASA, then starting up its astrobiology program, was looking for evidence that life could have evolved in odd environments—such as on other planets or their moons. “NASA [wanted] justification for going to Europa, to Titan, to Ganymede, to Callisto, to Mars,” says Hazen. If life does exist there, it’s likely to be under the surface, in warm, high-pressure environments.

Back on earth, Hazen says that by 2000 he had concluded that “making the basic building blocks of life is easy.” A harder question: How did the right building blocks get incorporated? Amino acids come in multiple forms, but only some are used by living things to form proteins. How did they find each other?


A hilly green campus in Washington, D.C. houses two departments of the Carnegie Institution for Science: the Geophysical Laboratory and the quaintly named Department of Terrestrial Magnetism. When the institution was founded, in 1902, measuring the earth’s magnetic field was a pressing scientific need for makers of nautical maps. Now, the people who work here—people like Bob Hazen—have more fundamental concerns. Hazen and his colleagues are using the institution’s “pressure bombs”—breadbox-size metal cylinders that squeeze and heat minerals to the insanely high temperatures and pressures found inside the earth—to decipher nothing less than the origins of life.

Hazen, a mineralogist, is investigating how the first organic chemicals—the kind found in living things—formed and then found each other nearly four billion years ago. He began this research in 1996, about two decades after scientists discovered hydrothermal vents—cracks in the deep ocean floor where water is heated to hundreds of degrees Fahrenheit by molten rock. The vents fuel strange underwater ecosystems inhabited by giant worms, blind shrimp and sulfur-eating bacteria. Hazen and his colleagues believed the complex, high-pressure vent environment—with rich mineral deposits and fissures spewing hot water into cold—might be where life began.

Hazen realized he could use the pressure bomb to test this theory. The device (technically known as an “internally heated, gas media pressure vessel”) is like a super-high-powered kitchen pressure cooker, producing temperatures exceeding 1,800 degrees and pressures up to 10,000 times that of the atmosphere at sea level. (If something were to go wrong, the ensuing explosion could take out a good part of the lab building; the operator runs the pressure bomb from behind an armored barrier.)

In his first experiment with the device, Hazen encased a few milligrams of water, an organic chemical called pyruvate and a powder that produces carbon dioxide all in a tiny capsule made of gold (which does not react with the chemicals inside) that he had welded himself. He put three capsules into the pressure bomb at 480 degrees and 2,000 atmospheres. And then he went to lunch. When he took the capsules out two hours later, the contents had turned into tens of thousands of different compounds. In later experiments, he combined nitrogen, ammonia and other molecules plausibly present on the early earth. In these experiments, Hazen and his colleagues created all sorts of organic molecules, including amino acids and sugars—the stuff of life.

Hazen’s experiments marked a turning point. Before them, origins-of-life research had been guided by a scenario scripted in 1871 by Charles Darwin himself: “But if (and oh! what a big if!) we could conceive in some warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, etc., present, that a proteine compound was chemically formed ready to undergo still more complex changes....”

In 1952, Stanley Miller, a graduate student in chemistry at the University of Chicago, attempted to create Darwin’s dream. Miller set up a container holding water (representing the early ocean) connected by glass tubes to one containing ammonia, methane and hydrogen—a mixture scientists of the day thought approximated the early atmosphere. A flame heated the water, sending vapor upward. In the atmosphere flask, electric sparks simulated lightning. The experiment was such a long shot that Miller’s adviser, Harold Urey, thought it a waste of time. But over the next few days, the water turned deep red. Miller had created a broth of amino acids.

Forty-four years later, Bob Hazen’s pressure bomb experiments would show that not just lightning storms but also hydrothermal vents potentially could have sparked life. His work soon led him to a more surprising conclusion: the basic molecules of life, it turns out, are able to form in all sorts of places: near hydrothermal vents, volcanoes, even on meteorites. Cracking open space rocks, astrobiologists have discovered amino acids, compounds similar to sugars and fatty acids, and nucleobases found in RNA and DNA. So it’s even possible that some of the first building blocks of life on earth came from outer space.

Hazen’s findings came at an auspicious time. “A few years before, we would have been laughed out of the origins-of-life community,” he says. But NASA, then starting up its astrobiology program, was looking for evidence that life could have evolved in odd environments—such as on other planets or their moons. “NASA [wanted] justification for going to Europa, to Titan, to Ganymede, to Callisto, to Mars,” says Hazen. If life does exist there, it’s likely to be under the surface, in warm, high-pressure environments.

Back on earth, Hazen says that by 2000 he had concluded that “making the basic building blocks of life is easy.” A harder question: How did the right building blocks get incorporated? Amino acids come in multiple forms, but only some are used by living things to form proteins. How did they find each other?

In a windowed corner of a lab building at the Carnegie Institution, Hazen is drawing molecules on a notepad and sketching the earliest steps on the road to life. “We’ve got a prebiotic ocean and down in the ocean floor, you’ve got rocks,” he says. “And basically there’s molecules here that are floating around in solution, but it’s a very dilute soup.” For a newly formed amino acid in the early ocean, it must have been a lonely life indeed. The familiar phrase “primordial soup” sounds rich and thick, but it was no beef stew. It was probably just a few molecules here and there in a vast ocean. “So the chances of a molecule over here bumping into this one, and then actually a chemical reaction going on to form some kind of larger structure, is just infinitesimally small,” Hazen continues. He thinks that rocks—whether the ore deposits that pile up around hydrothermal vents or those that line a tide pool on the surface—may have been the matchmakers that helped lonely amino acids find each other.

Rocks have texture, whether shiny and smooth or craggy and rough. Molecules on the surface of minerals have texture, too. Hydrogen atoms wander on and off a mineral’s surface, while electrons react with various molecules in the vicinity. An amino acid that drifts near a mineral could be attracted to its surface. Bits of amino acids might form a bond; form enough bonds and you’ve got a protein.

Back at the Carnegie lab, Hazen’s colleagues are looking into the first step in that courtship: Kateryna Klochko is preparing an experiment that—when combined with other experiments and a lot of math—should show how certain molecules stick to minerals. Do they adhere tightly to the mineral, or does a molecule attach in just one place, leaving the rest of it mobile and thereby increasing the chances it will link up to other molecules?

Klochko gets out a rack, plastic tubes and the liquids she needs. “It’s going to be very boring and tedious,” she warns. She puts a tiny dab of a powdered mineral in a four-inch plastic tube, then adds arginine, an amino acid, and a liquid to adjust the acidity. Then, while a gas bubbles through the solution, she waits...for eight minutes. The work may seem tedious indeed, but it takes concentration. “That’s the thing, each step is critical,” she says. “Each of them, if you make a mistake, the data will look weird, but you won’t know where you made a mistake.” She mixes the ingredients seven times, in seven tubes. As she works, “The Scientist” comes on the radio: “Nooooobody saaaaid it was easyyyy,” sings Coldplay vocalist Chris Martin.

After two hours, the samples go into a rotator, a kind of fast Ferris wheel for test tubes, to mix all night. In the morning, Klochko will measure how much arginine remains in the liquid; the rest of the amino acid will have stuck to the mineral powder’s tiny surfaces.

She and other researchers will repeat the same experiment with different minerals and different molecules, over and over in various combinations. The goal is for Hazen and his colleagues to be able to predict more complex interactions, like those that may have taken place in the earth’s early oceans.

How long will it take to go from studying how molecules interact with minerals to understanding how life began? No one knows. For one thing, scientists have never settled on a definition of life. Everyone has a general idea of what it is and that self-replication and passing information from generation to generation are key. Gerald Joyce, of the Scripps Research Institute in La Jolla, California, jokes that the definition should be “something like ‘that which is squishy.’”

Hazen’s work has implications beyond the origins of life. “Amino-acids-sticking-to-crystals is everywhere in the environment,” he says. Amino acids in your body stick to titanium joints; films of bacteria grow inside pipes; everywhere proteins and minerals meet, amino acids are interacting with crystals. “It’s every rock, it’s every soil, it’s the walls of the building, it’s microbes that interact with your teeth and bones, it’s everywhere,” Hazen says.

At his weekend retreat overlooking the Chesapeake Bay, Hazen, 61, peers through binoculars at some black-and-white ducks bobbing around in circles and stirring the otherwise still water. He thinks they’re herding fish—a behavior he’s never seen before. He calls for his wife, Margee, to come take a look: “There’s this really interesting phenomenon going on with the buffleheads!”

Living room shelves hold things the couple has found nearby: beach glass, a basketful of minerals, and fossilized barnacles, coral and great white shark teeth. A 15-million-year-old whale jawbone, discovered on the beach at low tide, is spread out in pieces on the dining room table, where Hazen is cleaning it. “It was part of a living, breathing whale when this was a tropical paradise,” he says.

Hazen traces his interest in prehistory to his Cleveland childhood, growing up not far from a fossil quarry. “I collected my first trilobite when I was 9 or 10,” he says. “I just thought they were cool,” he says of the marine arthropods that went extinct millions of years ago. After his family moved to New Jersey, his eighth-grade science teacher encouraged him to check out the minerals in nearby towns. “He gave me maps and he gave me directions and he gave me specimens, and my parents would take me to these places,” says Hazen. “So I just got hooked.”

After taking a paleontology class together at the Massachusetts Institute of Technology, Hazen and Margee Hindle, his future wife, started collecting trilobites. They now have thousands. “Some of them are incredibly cute,” says Hazen. “This bulbous nose—you want to hug them.”

There are trilobites all over Hazen’s office and a basement guest room at the Hazens’ Bethesda, Maryland, home—they cover shelves and fill desk drawers and cabinets. There’s even trilobite art by his now grown children, Ben, 34, who is studying to be an art therapist, and Liz, 32, a teacher. “This is the ultimate cute trilobite,” he says, reaching into a cabinet and taking out a Paralejurus. “How can you not love that?”

Hazen calls himself a “natural collector.” After he and Margee bought a picture frame that just happened to hold a photograph of a brass band, they started buying other pictures of brass bands; eventually they wrote a history of brass bands—Music Men—and a time in America when almost every town had its own. (Bob has played trumpet professionally since 1966.) He has also published a collection of 18th-and 19th-century poems about geology, most of which, he says, are pretty bad (“And O ye rocks! schist, gneiss, whate’er ye be/Ye varied strata, names too hard for me”). But the couple tend not to hold on to things. “As weird as this sounds, as a collector, I’ve never been acquisitive,” Bob says. “To have been able to hold them and study them up close is really a privilege. But they shouldn’t be in private hands.” Which is why the Hazen Collection of Band Photographs and Ephemera, ca. 1818-1931, is now at the National Museum of American History. Harvard has the mineral collection he started in eighth grade, and the Hazens are in the process of donating their trilobites to the National Museum of Natural History.

After considering, for some time, how minerals may have helped life evolve, Hazen is now investigating the other side of the equation: how life spurred the development of minerals. He explains that there were only about a dozen different minerals—including diamonds and graphite—in dust grains that pre-date the solar system. Another 50 or so formed as the sun ignited. On earth, volcanoes emitted basalt, and plate tectonics made ores of copper, lead and zinc. “The minerals become players in this sort of epic story of exploding stars and planetary formation and the triggering of plate tectonics,” he says. “And then life plays a key role.” By introducing oxygen into the atmosphere, photosynthesis made possible new kinds of minerals—turquoise, azurite and malachite, for example. Mosses and algae climbed onto land, breaking down rock and making clay, which made bigger plants possible, which made deeper soil, and so on. Today there are about 4,400 known minerals—more than two-thirds of which came into being only because of the way life changed the planet. Some of them were created exclusively by living organisms.

Everywhere he looks, Hazen says, he sees the same fascinating process: increasing complexity. “You see the same phenomena over and over, in languages and in material culture—in life itself. Stuff gets more complicated.” It’s the complexity of the hydrothermal vent environment—gushing hot water mixing with cold water near rocks, and ore deposits providing hard surfaces where newly formed amino acids could congregate—that makes it such a good candidate as a cradle of life. “Organic chemists have long used test tubes,” he says, “but the origin of life uses rocks, it uses water, it uses atmosphere. Once life gets a foothold, the fact that the environment is so variable is what drives evolution.” Minerals evolve, life arises and diversifies, and along come trilobites, whales, primates and, before you know it, brass bands.

Helen Fields has written about snakehead fish and the discovery of soft tissue in dinosaur fossils for Smithsonian. Amanda Lucidon is based in Washington, D.C.


Single Page 1 2 3 Next »

    Subscribe now for more of Smithsonian's coverage on history, science and nature.


Related topics: Earth Science Precambrian Eon


| | | Reddit | Digg | Stumble | Email |
 

Add New Comment


Name: (required)

Email: (required)

Comment:

Comments are moderated, and will not appear until Smithsonian.com has approved them. Smithsonian reserves the right not to post any comments that are unlawful, threatening, offensive, defamatory, invasive of a person's privacy, inappropriate, confidential or proprietary, political messages, product endorsements, or other content that might otherwise violate any laws or policies.

Comments (18)

+ View All Comments

origin of life? it's not what you sugests!! i am sorry to tell you that everything you are writing about the origin of life is WRONG life began when someone you call nature FIRST created 4 letters from 4 complex molecules and combined - wrote programs that created life life. that someone first created a cell and then wrote complex programs that converted ordinary chmichals to life. that someone created a spell check so the cell replication is accurate. this cell was created 3.5 billion years ago and NEVER EVOLVED. Life was created by computer and he bible says that. in the beginning was the word is scientifically accurate.....then god wrote DNA programs and left them torule over us...and the word was god.

Posted by joe lanyadoo on April 8,2013 | 07:25 AM

Origin of life and living matter in hot mineral water The evidence shown indicates that the origination of life and living matter depends on the properties and structure of water and also on additional conditions. Hot mineral water, which interacts with calcium carbonate is closest to these conditions and has left a trace in plants with its structure, and entropy. Next in line with regard to quality are sea and mountain water (Ignatov, Mosin, 2010). In warm and hot mineral waters the peaks in the infrared spectrum are more pronounced in comparison to the peaks in the same water with a lower temperature. In 2011 Tadashi Sugawara also brought us closer to the secret that life has originated in hot water. He has created a proto cells, which are similar of bubbles. For this purpose, they have made an aqueous solution of organic molecules, DNA and synthetic enzymes. The solution was heated to a temperature close to water’s boiling point – 95 °C. Then its temperature was lowered to 65°C. In 2011 Marie-Laure Pons from the Laboratory of Geology in Lyon, France was studied some of the oldest rocks in the planet and found the mineral serpentinite. It was previously thought that the first living creatures evolved in geysers. The French scientists were proved that in Greenland the water was rich in carbonates, not too acidic. The temperatures would have ranged from 100 to 300°C. In January 2010, American scientist David Ward and colleagues described fossilized stromatolites in the Glacier National Park in the USA. They are studying microbes in Yellowstone National Park in USA, which are building stromatolites in hot water similar like ancient organisms. Rotorua in New Zealand is a similar place. Stromatolites have lived in warm and hot water in zones of volcanic activity. Warm and hot waters can be heated by magma as well. Their age is 3.5 billion years in Greenland. Source: http://www.medicalbiophysics.dir.bg/en/water_memory.html

Posted by Prof. Stanislav Zenin on March 12,2013 | 04:52 PM

He is stupid

Posted by on November 1,2012 | 06:29 PM

To understand origin of life, the first thing that needs to be understood is, which of the properties of matter can possibly account for inanimate to animate transformation. Last Universal Common Ancestor has been held to be the common ancestor of all the organisms that are known to exist on Earth. However, it is not correct and therefore ruled out. http://sciencengod.com/blog/whether-or-not-last-universal-common-ancestor-is-even-probable/ http://www.sciencengod.com http://sciencengod.com/buynow.php

Posted by Dr Mahesh C. Jain on October 9,2012 | 10:49 PM

Hazen gives good lectures, I heard him here in Uppsala at his Linné lecture.

Creationists shouldn't comment on science:

@ MPK:

Pyruvate is C3H3O3 [ http://en.wikipedia.org/wiki/Pyruvic_acid ].

@ Hans Hollis, MPK:

We have testable evidence for chemical to biological evolution.

Bottom up, both AMP/ATP and lipid protocell membranes form spontaneously. Top-down we now know that the earliest gene families handled ATP. Hence ATP sits at a nested sets of traits or a tested phylogeny.

The RNA world is that bottleneck environment, and you have to go to Szostak et al for that. We also now know that RNA selfreplicators can get long enough spontaneously, and that they interact well with self-replicating protocell membranes. The trick is to put the pieces together - they are working on it.

More generally, astrobiology has gone from coming up with new pathways to try to reject those who doesn't work. Among those that will remain will be the one taken in our case.

Posted by Torbjörn Larsson, OM on February 24,2012 | 10:57 AM

Wow this is a really cool project. I might be able to try it out and use it for my science project. Thanks whoever the creator is :)

Posted by Kayla on October 5,2011 | 08:25 PM

Thomas Gold's "Deep Hot Biosphere" discussed the possibilty of life originating under the surface of the earth back in the 1980's.

http://en.wikipedia.org/wiki/The_Deep_Hot_Biosphere#Origins_of_petroleum

There are compelling reasons why this should be. If "life" originated by a lucky chance out of random combinations of organic chemicals, then it would be most likely to originate in a region where the chemical reactions were at their peak density and peak reaction rate: at high pressures and temperatures that naturally occur under the surface.

Posted by john b on November 16,2010 | 05:39 PM

Wow, this is my next science project. Thanks Smithsonian

Posted by Q on October 23,2010 | 06:03 PM

I think I am a sane, well educated person. However, I have had some psychic ability that I don't understand and usually try to avoid. One of the recurring messages I have been getting for years is "The answer is in the rocks." Maybe this article explains that message.

Posted by Gwen Hays on October 20,2010 | 12:47 PM

Great article. How could people not find this kind of topic utterly fascinating?

Posted by Bob on October 13,2010 | 05:48 PM

I have subscribed to Smithsonian magazine for some 25 years and often enjoy the articles presented. Before There Was Life in the October 2010 issue is a rare exception. The idea that life somehow arose around hydrothermal vents was dismissed by Stanley Miller himself. In an interview appearing in Astrobiology Magazine on the 50th anniversary of Miller’s original experiment and subsequent paper, Miller stated ”the conditions of such ocean venting decomposes rather than enhances prebiotic chemistry.”

Chemist Jeffrey L. Bada of the University of California, (as reported in the New York Times) added: “This is probably the most unlikely area for the origin of life to occur”.

As a side note, Stanley Miller’s obituary appeared in The New York Times on May 23, 2007. In part, it stated “Despite the brilliant beginning, neither he nor others were able to take the next step, that of providing a plausible mechanism by which these chemicals could have been assembled into living cells or macromolecules, DNA and proteins – on which cells depend.” Mr. Hazen has only shown that amino acids can be formed under certain conditions, something that is already widely known. He, too, has failed to provide a plausible mechanism by which these chemicals could have been assembled into living cells.

Sincerely,

Hans Hollis

Posted by Hans Hollis on October 12,2010 | 02:43 PM

Thanks to scientists who continue to explore new ways of looking at how life could have started we have a more complete idea of what could have happened here on Earth about 4 billion years ago. Let's go to mars, drill down and find out if life is still there. Just a suggestion.

Posted by Bob Wiersma on October 8,2010 | 04:28 PM

This is shallow science for such a bold title. "I do wish that creationists would actually know the science they decry...The only thing organic chemical means is that it has carbon in it." Wrong, elitist Vel, Pyruvate, as a compound, has no carbon in its structure. Soup in is still soup out. Maybe there’s something useful still to come, but for now, this column describes nothing more than expensive alchemy.

Posted by MPK on October 7,2010 | 10:24 PM

I do wish that creationists would actually know the science they decry and realize that organic chemicals aren't only those that are made by life. We known how to make organic chemicals from inorganic. They are made that way in nature. We have done so since around 1832 when Wohler synthesized urea from inorganic chemicals. The only thing organic chemical means is that it has carbon in it.

Posted by vel on September 29,2010 | 12:46 PM

+ View All Comments



Advertisement


Most Popular

  • Viewed
  • Emailed
  • Commented
  1. The Scariest Monsters of the Deep Sea
  2. 16 Photographs That Capture the Best and Worst of 1970s America
  3. Jack Andraka, the Teen Prodigy of Pancreatic Cancer
  4. The Ten Most Disturbing Scientific Discoveries
  5. What is Causing Iran’s Spike in MS Cases?

  6. Ten Inventions Inspired by Science Fiction
  7. Microbes: The Trillions of Creatures Governing Your Health

  8. How Titanoboa, the 40-Foot-Long Snake, Was Found
  9. Photos of the World’s Oldest Living Things
  10. Top Ten Most-Destructive Computer Viruses
  1. Why Procrastination is Good for You
  2. When Continental Drift Was Considered Pseudoscience
  3. Microbes: The Trillions of Creatures Governing Your Health

  1. Life on Mars?
  2. Ten Plants That Put Meat on Their Plates
  3. The Spotted Owl's New Nemesis
  4. Breeding Cheetahs
  5. How Titanoboa, the 40-Foot-Long Snake, Was Found

View All Most Popular »

Advertisement

Follow Us

Smithsonian Magazine
@SmithsonianMag
Follow Smithsonian Magazine on Twitter

Sign up for regular email updates from Smithsonian.com, including daily newsletters and special offers.

In The Magazine

May 2013

  • Patriot Games
  • The Next Revolution
  • Blowing Up The Art World
  • The Body Eclectic
  • Microbe Hunters

View Table of Contents »






First Name
Last Name
Address 1
Address 2
City
State   Zip
Email


Travel with Smithsonian




Smithsonian Store

Stars and Stripes Throw

Our exclusive Stars and Stripes Throw is a three-layer adaption of the 1861 “Stars and Stripes” quilt... $65



View full archiveRecent Issues


  • May 2013


  • Apr 2013


  • Mar 2013

Newsletter

Sign up for regular email updates from Smithsonian magazine, including free newsletters, special offers and current news updates.

Subscribe Now

About Us

Smithsonian.com expands on Smithsonian magazine's in-depth coverage of history, science, nature, the arts, travel, world culture and technology. Join us regularly as we take a dynamic and interactive approach to exploring modern and historic perspectives on the arts, sciences, nature, world culture and travel, including videos, blogs and a reader forum.

Explore our Brands

  • goSmithsonian.com
  • Smithsonian Air & Space Museum
  • Smithsonian Student Travel
  • Smithsonian Catalogue
  • Smithsonian Journeys
  • Smithsonian Channel
  • About Smithsonian
  • Contact Us
  • Advertising
  • Subscribe
  • RSS
  • Topics
  • Member Services
  • Copyright
  • Site Map
  • Privacy Policy
  • Ad Choices

Smithsonian Institution