• Smithsonian
    Institution
  • Travel
    With Us
  • Smithsonian
    Store
  • Smithsonian
    Channel
  • goSmithsonian
    Visitors Guide
  • Air & Space
    magazine

Smithsonian.com

  • Subscribe
  • History & Archaeology
  • Science
  • Ideas & Innovations
  • Arts & Culture
  • Travel & Food
  • At the Smithsonian
  • Photos
  • Videos
  • Games
  • Shop
  • Human Behavior
  • Mind & Body
  • Our Planet
  • Technology
  • Space
  • Wildlife
  • Art Meets Science
  • Science & Nature

The Building Blocks of Life May Have Come From Outer Space

| | | Reddit | Digg | Stumble | Email |
  • By Ker Than
  • Smithsonian magazine, February 2013, Subscribe
 
meteorite
“Something pretty mysterious had to give rise to the origin of the universe.” –Richard Dawkins (Shutterstock)

More from Smithsonian.com

  • The Planet Hunters
  • Scientists Discover That Mars is Full of Water
  • A Planet Spotted As It Begins To Form

Ever since the discovery of organic molecules in a meteorite that landed in Australia about half a century ago, scientists have been tantalized by the possibility that the building blocks of life originated in space. New research is shedding light on how such compounds might have formed and found their way to Earth.

Fred Ciesla, a planetary scientist at the University of Chicago, and Scott Sanford, a NASA astrophysicist, say our solar system was on the fast track to create life before Earth existed. The scientists made a computer model of the solar nebula—the disk of gas and dust from which the Sun and planets formed 4.6 billion years ago. The primordial debris included icy grains containing frozen water, ammonia and carbon dioxide, among other molecules.

Ciesla and Sanford simu- lated the movements of 5,000 ice grains over a million years in the turbulence of the solar nebula, which tossed them about like laundry in a dryer, lofting some “high enough [so] that they were being irradiated directly by the young Sun,” says Ciesla. High-energy ultraviolet radiation broke molecular bonds, creating highly reactive atoms that were prone to recombine and form more stable—and sometimes, more complex—compounds.

Ciesla and Sanford say this process could have generated organic molecules such as amino acids, amphiphiles and nucleobases—the building blocks of proteins, cell membranes and RNA and DNA, respectively.

Some of these organic molecules found their way to small rocky bodies—planetesimals—that littered the early solar system. Those, in turn, combined to form comets, asteroids and planets, including ours. Thus young Earth, Ciesla theorizes, was infused with organic molecules fabricated in space. Additional organic compounds, he suggests, could have formed later in Earth’s primordial soup or were delivered to our planet by comets and meteorites.

The odds of meteorites reaching Earth got a boost from Jupiter, say Rebecca Martin, a NASA Sagan Fellow from the University of Colorado, and astronomer Mario Livio of the Space Telescope Science Institute in Baltimore. When the solar system was forming, Jupi­ter’s gravity prevented nearby planetesimals from coalescing. The bodies smashed into one another, breaking into fragments that settled into an asteroid belt 158 million miles from Earth. If a young Jupiter had passed through the belt while settling into its orbit around the Sun, it would have scattered the asteroids; if its orbit had been too far from the belt, asteroids would have accumulated and constantly bombarded the Earth, rendering it lifeless. Instead, the asteroid belt provided just the right amount of asteroids to courier compounds to Earth without pounding it into oblivion.

Both studies point to the possibility of life on other planets. Ciesla says, “If the process that we describe did play a role in the formation of the organics that we see in meteorites, then we expect basically every solar system to contain” organics. However, only 4 percent of the known solar systems in our galaxy possess a Jupiter-type planet in the right place to create an asteroid belt like ours. “There could be more asteroid belts out there,” says Martin, “but we just can’t see them yet.”


Ever since the discovery of organic molecules in a meteorite that landed in Australia about half a century ago, scientists have been tantalized by the possibility that the building blocks of life originated in space. New research is shedding light on how such compounds might have formed and found their way to Earth.

Fred Ciesla, a planetary scientist at the University of Chicago, and Scott Sanford, a NASA astrophysicist, say our solar system was on the fast track to create life before Earth existed. The scientists made a computer model of the solar nebula—the disk of gas and dust from which the Sun and planets formed 4.6 billion years ago. The primordial debris included icy grains containing frozen water, ammonia and carbon dioxide, among other molecules.

Ciesla and Sanford simu- lated the movements of 5,000 ice grains over a million years in the turbulence of the solar nebula, which tossed them about like laundry in a dryer, lofting some “high enough [so] that they were being irradiated directly by the young Sun,” says Ciesla. High-energy ultraviolet radiation broke molecular bonds, creating highly reactive atoms that were prone to recombine and form more stable—and sometimes, more complex—compounds.

Ciesla and Sanford say this process could have generated organic molecules such as amino acids, amphiphiles and nucleobases—the building blocks of proteins, cell membranes and RNA and DNA, respectively.

Some of these organic molecules found their way to small rocky bodies—planetesimals—that littered the early solar system. Those, in turn, combined to form comets, asteroids and planets, including ours. Thus young Earth, Ciesla theorizes, was infused with organic molecules fabricated in space. Additional organic compounds, he suggests, could have formed later in Earth’s primordial soup or were delivered to our planet by comets and meteorites.

The odds of meteorites reaching Earth got a boost from Jupiter, say Rebecca Martin, a NASA Sagan Fellow from the University of Colorado, and astronomer Mario Livio of the Space Telescope Science Institute in Baltimore. When the solar system was forming, Jupi­ter’s gravity prevented nearby planetesimals from coalescing. The bodies smashed into one another, breaking into fragments that settled into an asteroid belt 158 million miles from Earth. If a young Jupiter had passed through the belt while settling into its orbit around the Sun, it would have scattered the asteroids; if its orbit had been too far from the belt, asteroids would have accumulated and constantly bombarded the Earth, rendering it lifeless. Instead, the asteroid belt provided just the right amount of asteroids to courier compounds to Earth without pounding it into oblivion.

Both studies point to the possibility of life on other planets. Ciesla says, “If the process that we describe did play a role in the formation of the organics that we see in meteorites, then we expect basically every solar system to contain” organics. However, only 4 percent of the known solar systems in our galaxy possess a Jupiter-type planet in the right place to create an asteroid belt like ours. “There could be more asteroid belts out there,” says Martin, “but we just can’t see them yet.”

    Subscribe now for more of Smithsonian's coverage on history, science and nature.


Related topics: Astrophysics Planet Earth


| | | Reddit | Digg | Stumble | Email |
 

Add New Comment


Name: (required)

Email: (required)

Comment:

Comments are moderated, and will not appear until Smithsonian.com has approved them. Smithsonian reserves the right not to post any comments that are unlawful, threatening, offensive, defamatory, invasive of a person's privacy, inappropriate, confidential or proprietary, political messages, product endorsements, or other content that might otherwise violate any laws or policies.

Comments (1)

This seems obvious to me.

Posted by Jake on January 30,2013 | 11:39 AM



Advertisement


Most Popular

  • Viewed
  • Emailed
  • Commented
  1. Jack Andraka, the Teen Prodigy of Pancreatic Cancer
  2. When Did Humans Come to the Americas?
  3. The Scariest Monsters of the Deep Sea
  4. The Ten Most Disturbing Scientific Discoveries
  5. Ten Inventions Inspired by Science Fiction
  6. Photos of the World’s Oldest Living Things
  7. How Titanoboa, the 40-Foot-Long Snake, Was Found
  8. How Our Brains Make Memories
  9. Ten Historic Female Scientists You Should Know
  10. Top Ten Most-Destructive Computer Viruses
  1. Jack Andraka, the Teen Prodigy of Pancreatic Cancer
  2. The Pros to Being a Psychopath
  3. Who's Laughing Now?
  1. The Evolution of Charles Darwin
  2. Conquering Polio
  3. The Spotted Owl's New Nemesis
  4. The World's Worst Invasive Mammals

View All Most Popular »

Advertisement

Follow Us

Smithsonian Magazine
@SmithsonianMag
Follow Smithsonian Magazine on Twitter

Sign up for regular email updates from Smithsonian.com, including daily newsletters and special offers.

In The Magazine

February 2013

  • The First Americans
  • See for Yourself
  • The Dragon King
  • America’s Dinosaur Playground
  • Darwin In The House

View Table of Contents »






First Name
Last Name
Address 1
Address 2
City
State   Zip
Email


Travel with Smithsonian




Smithsonian Store

Framed Lincoln Tribute

This Framed Lincoln Tribute includes his photograph, an excerpt from his Gettysburg Address, two Lincoln postage stamps and four Lincoln pennies... $40



View full archiveRecent Issues


  • Feb 2013


  • Jan 2013


  • Dec 2012

Newsletter

Sign up for regular email updates from Smithsonian magazine, including free newsletters, special offers and current news updates.

Subscribe Now

About Us

Smithsonian.com expands on Smithsonian magazine's in-depth coverage of history, science, nature, the arts, travel, world culture and technology. Join us regularly as we take a dynamic and interactive approach to exploring modern and historic perspectives on the arts, sciences, nature, world culture and travel, including videos, blogs and a reader forum.

Explore our Brands

  • goSmithsonian.com
  • Smithsonian Air & Space Museum
  • Smithsonian Student Travel
  • Smithsonian Catalogue
  • Smithsonian Journeys
  • Smithsonian Channel
  • About Smithsonian
  • Contact Us
  • Advertising
  • Subscribe
  • RSS
  • Topics
  • Member Services
  • Copyright
  • Site Map
  • Privacy Policy
  • Ad Choices

Smithsonian Institution