• Smithsonian
    Institution
  • Travel
    With Us
  • Smithsonian
    Store
  • Smithsonian
    Channel
  • goSmithsonian
    Visitors Guide
  • Air & Space
    magazine

Smithsonian.com

  • Subscribe
  • History & Archaeology
  • Science
  • Ideas & Innovations
  • Arts & Culture
  • Travel & Food
  • At the Smithsonian
  • Photos
  • Videos
  • Games
  • Shop
  • Human Behavior
  • Mind & Body
  • Our Planet
  • Technology
  • Space
  • Wildlife
  • Art Meets Science
  • Science & Nature

The Building Blocks of Life May Have Come From Outer Space

| | | Reddit | Digg | Stumble | Email |
  • By Ker Than
  • Smithsonian magazine, February 2013, Subscribe
 
meteorite
“Something pretty mysterious had to give rise to the origin of the universe.” –Richard Dawkins (Shutterstock)

More from Smithsonian.com

  • The Planet Hunters
  • Scientists Discover That Mars is Full of Water
  • A Planet Spotted As It Begins To Form

Ever since the discovery of organic molecules in a meteorite that landed in Australia about half a century ago, scientists have been tantalized by the possibility that the building blocks of life originated in space. New research is shedding light on how such compounds might have formed and found their way to Earth.

Fred Ciesla, a planetary scientist at the University of Chicago, and Scott Sanford, a NASA astrophysicist, say our solar system was on the fast track to create life before Earth existed. The scientists made a computer model of the solar nebula—the disk of gas and dust from which the Sun and planets formed 4.6 billion years ago. The primordial debris included icy grains containing frozen water, ammonia and carbon dioxide, among other molecules.

Ciesla and Sanford simu- lated the movements of 5,000 ice grains over a million years in the turbulence of the solar nebula, which tossed them about like laundry in a dryer, lofting some “high enough [so] that they were being irradiated directly by the young Sun,” says Ciesla. High-energy ultraviolet radiation broke molecular bonds, creating highly reactive atoms that were prone to recombine and form more stable—and sometimes, more complex—compounds.

Ciesla and Sanford say this process could have generated organic molecules such as amino acids, amphiphiles and nucleobases—the building blocks of proteins, cell membranes and RNA and DNA, respectively.

Some of these organic molecules found their way to small rocky bodies—planetesimals—that littered the early solar system. Those, in turn, combined to form comets, asteroids and planets, including ours. Thus young Earth, Ciesla theorizes, was infused with organic molecules fabricated in space. Additional organic compounds, he suggests, could have formed later in Earth’s primordial soup or were delivered to our planet by comets and meteorites.

The odds of meteorites reaching Earth got a boost from Jupiter, say Rebecca Martin, a NASA Sagan Fellow from the University of Colorado, and astronomer Mario Livio of the Space Telescope Science Institute in Baltimore. When the solar system was forming, Jupi­ter’s gravity prevented nearby planetesimals from coalescing. The bodies smashed into one another, breaking into fragments that settled into an asteroid belt 158 million miles from Earth. If a young Jupiter had passed through the belt while settling into its orbit around the Sun, it would have scattered the asteroids; if its orbit had been too far from the belt, asteroids would have accumulated and constantly bombarded the Earth, rendering it lifeless. Instead, the asteroid belt provided just the right amount of asteroids to courier compounds to Earth without pounding it into oblivion.

Both studies point to the possibility of life on other planets. Ciesla says, “If the process that we describe did play a role in the formation of the organics that we see in meteorites, then we expect basically every solar system to contain” organics. However, only 4 percent of the known solar systems in our galaxy possess a Jupiter-type planet in the right place to create an asteroid belt like ours. “There could be more asteroid belts out there,” says Martin, “but we just can’t see them yet.”


Ever since the discovery of organic molecules in a meteorite that landed in Australia about half a century ago, scientists have been tantalized by the possibility that the building blocks of life originated in space. New research is shedding light on how such compounds might have formed and found their way to Earth.

Fred Ciesla, a planetary scientist at the University of Chicago, and Scott Sanford, a NASA astrophysicist, say our solar system was on the fast track to create life before Earth existed. The scientists made a computer model of the solar nebula—the disk of gas and dust from which the Sun and planets formed 4.6 billion years ago. The primordial debris included icy grains containing frozen water, ammonia and carbon dioxide, among other molecules.

Ciesla and Sanford simu- lated the movements of 5,000 ice grains over a million years in the turbulence of the solar nebula, which tossed them about like laundry in a dryer, lofting some “high enough [so] that they were being irradiated directly by the young Sun,” says Ciesla. High-energy ultraviolet radiation broke molecular bonds, creating highly reactive atoms that were prone to recombine and form more stable—and sometimes, more complex—compounds.

Ciesla and Sanford say this process could have generated organic molecules such as amino acids, amphiphiles and nucleobases—the building blocks of proteins, cell membranes and RNA and DNA, respectively.

Some of these organic molecules found their way to small rocky bodies—planetesimals—that littered the early solar system. Those, in turn, combined to form comets, asteroids and planets, including ours. Thus young Earth, Ciesla theorizes, was infused with organic molecules fabricated in space. Additional organic compounds, he suggests, could have formed later in Earth’s primordial soup or were delivered to our planet by comets and meteorites.

The odds of meteorites reaching Earth got a boost from Jupiter, say Rebecca Martin, a NASA Sagan Fellow from the University of Colorado, and astronomer Mario Livio of the Space Telescope Science Institute in Baltimore. When the solar system was forming, Jupi­ter’s gravity prevented nearby planetesimals from coalescing. The bodies smashed into one another, breaking into fragments that settled into an asteroid belt 158 million miles from Earth. If a young Jupiter had passed through the belt while settling into its orbit around the Sun, it would have scattered the asteroids; if its orbit had been too far from the belt, asteroids would have accumulated and constantly bombarded the Earth, rendering it lifeless. Instead, the asteroid belt provided just the right amount of asteroids to courier compounds to Earth without pounding it into oblivion.

Both studies point to the possibility of life on other planets. Ciesla says, “If the process that we describe did play a role in the formation of the organics that we see in meteorites, then we expect basically every solar system to contain” organics. However, only 4 percent of the known solar systems in our galaxy possess a Jupiter-type planet in the right place to create an asteroid belt like ours. “There could be more asteroid belts out there,” says Martin, “but we just can’t see them yet.”

    Subscribe now for more of Smithsonian's coverage on history, science and nature.


Related topics: Astrophysics Planet Earth


| | | Reddit | Digg | Stumble | Email |
 

Add New Comment


Name: (required)

Email: (required)

Comment:

Comments are moderated, and will not appear until Smithsonian.com has approved them. Smithsonian reserves the right not to post any comments that are unlawful, threatening, offensive, defamatory, invasive of a person's privacy, inappropriate, confidential or proprietary, political messages, product endorsements, or other content that might otherwise violate any laws or policies.

Comments (2)

In response to Ker Tan's Rocky Start: The scientific compilation of D.S. Allan and J.B. Delair in "Cataclysm" presents an interesting view of how the asteroid belt is the result of fragments of the exploding Vela Supernova (named Phaeton-Marduk) entering our solar system around 9500 BC causing major planetary disruption, destroying the 5th planet, Taimat, whose remnants comprise the present belt. Their thesis is aided by many ancient oral histories of our planet and point toward a plausible explanation of the deluge. Views received from Hubble certainly can cause one to wonder about our vast creation.

Posted by BruceWallace on March 13,2013 | 11:29 AM

This seems obvious to me.

Posted by Jake on January 30,2013 | 11:39 AM



Advertisement


Most Popular

  • Viewed
  • Emailed
  • Commented
  1. 16 Photographs That Capture the Best and Worst of 1970s America
  2. The Scariest Monsters of the Deep Sea
  3. Jack Andraka, the Teen Prodigy of Pancreatic Cancer
  4. The Ten Most Disturbing Scientific Discoveries
  5. What is Causing Iran’s Spike in MS Cases?

  6. Microbes: The Trillions of Creatures Governing Your Health

  7. Ten Inventions Inspired by Science Fiction
  8. How Titanoboa, the 40-Foot-Long Snake, Was Found
  9. Photos of the World’s Oldest Living Things
  10. Top Ten Most-Destructive Computer Viruses
  1. When Continental Drift Was Considered Pseudoscience
  2. Why Procrastination is Good for You
  3. Microbes: The Trillions of Creatures Governing Your Health

  1. Life on Mars?
  2. The Spotted Owl's New Nemesis
  3. Ten Plants That Put Meat on Their Plates
  4. How Titanoboa, the 40-Foot-Long Snake, Was Found
  5. Breeding Cheetahs

View All Most Popular »

Advertisement

Follow Us

Smithsonian Magazine
@SmithsonianMag
Follow Smithsonian Magazine on Twitter

Sign up for regular email updates from Smithsonian.com, including daily newsletters and special offers.

In The Magazine

May 2013

  • Patriot Games
  • The Next Revolution
  • Blowing Up The Art World
  • The Body Eclectic
  • Microbe Hunters

View Table of Contents »






First Name
Last Name
Address 1
Address 2
City
State   Zip
Email


Travel with Smithsonian




Smithsonian Store

Stars and Stripes Throw

Our exclusive Stars and Stripes Throw is a three-layer adaption of the 1861 “Stars and Stripes” quilt... $65



View full archiveRecent Issues


  • May 2013


  • Apr 2013


  • Mar 2013

Newsletter

Sign up for regular email updates from Smithsonian magazine, including free newsletters, special offers and current news updates.

Subscribe Now

About Us

Smithsonian.com expands on Smithsonian magazine's in-depth coverage of history, science, nature, the arts, travel, world culture and technology. Join us regularly as we take a dynamic and interactive approach to exploring modern and historic perspectives on the arts, sciences, nature, world culture and travel, including videos, blogs and a reader forum.

Explore our Brands

  • goSmithsonian.com
  • Smithsonian Air & Space Museum
  • Smithsonian Student Travel
  • Smithsonian Catalogue
  • Smithsonian Journeys
  • Smithsonian Channel
  • About Smithsonian
  • Contact Us
  • Advertising
  • Subscribe
  • RSS
  • Topics
  • Member Services
  • Copyright
  • Site Map
  • Privacy Policy
  • Ad Choices

Smithsonian Institution