Sherlock of Spuds
In a case that could reveal the villain behind the Irish Potato Famine, the gumshoe is a plant scientist
- By T. Edward Nickens
- Smithsonian magazine, December 2002, Subscribe
"I got chills the first time I held these," Jean Beagle Ristaino says. She gingerly spreads the shriveled leaves of five potato plants on a worktable. They look as if they’ve been moldering away under a refrigerator somewhere. But Ristaino, a plant pathologist at North Carolina State University in Raleigh, has been using them as Exhibit A in a demonstration of molecular detective work so deft one learned journal recently dubbed her "the Sherlock of Spuds."
Scientists have long assumed they knew what caused the potato blight that starved a million Irish in the mid-19th century: the 1b strain of the funguslike water mold called Phytophthora infestans, a disease that is believed to have originated in Mexico. Ristaino did not doubt that some strain of P. infestans was the cause, but she was not so sure about 1b. So she and her colleagues studied DNA from infected potato leaves collected in Ireland, Britain and France during the mid-1840s.
DNA, or deoxyribonucleic acid, is the double strand of molecules that carries a cell’s unique genetic code. Within the past decade or so, DNA analysis of criminal evidence has overturned the convictions of more than 100 inmates in U.S. prisons, including 12 on death row. Ristaino’s project marked the first time the technique had been used to investigate a historic plant disease, and last year she asserted that it proved 1b was not the culprit after all. "This was a fantastic application of a novel technique that told us we were on the wrong path," says Greg Forbes of the International Potato Center, a research facility in Lima, Peru.
But if 1b wasn’t responsible for the Irish famine, which strain was? Did it originate in Mexico or somewhere else? If we knew how the disease evolved, could modern outbreaks be prevented? Today, Ristaino is wrestling with these vexing questions.
The study of plant diseases is not for everyone. Those who do this specialized work—the American Phytopathological Society (APS), based in St. Paul, Minnesota, lists nearly 5,000 members—tend to be driven perfectionists. Typically a researcher inoculates healthy plants with fungi, a virus or bacteria to learn how a disease works. Breakthroughs like Ristaino’s are rare, but when they do occur they can change history.
In 1977 Eugene Nester of the University of Washington in Seattle discovered that a bacterium that produces plant tumors actually incorporates its own DNA into the DNA of a host plant’s cells. In time, that insight led scientists to be able to replace that bacterium’s "bad" genes with "good" ones, and use the technique to engineer disease- and herbicide-resistant cotton and soybeans. In 1993, Gregory Martin of the Boyce Thompson Institute for Plant Research in Ithaca, New York, became the first pathologist to clone a disease resistance gene. More than two dozen such genes have since been cloned, enabling breeders to grow hardier strains of tobacco, tomato, rice and flax.
Ristaino’s revelation that 1b did not cause the Irish potato famine is controversial—some researchers question her methodology—but her further suggestion that P. infestans could have originated in South America undercuts conventional wisdom. "There’s a big debate about this," cautions Stephen Goodwin, a U.S. Department of Agriculture (USDA) plant pathologist at Purdue University, whose own genetics studies a decade ago shored up the theory of a Mexican origin. "More work needs to be done." Meanwhile, fungicide-resistant new strains of the old disease are devastating potato fields all over the world.
A sixth-generation native of Washington, D.C., Ristaino entered the University of Maryland as a history major, then switched to biology. As a student at the USDA’s sprawling research center in Beltsville, Maryland, she worked part-time washing petri dishes and hauling sacks of alfalfa. One day she stumbled upon an enormous fungus collection squirreled away in the basement. "That’s where I discovered plant pathology," she says, her blue eyes glittering. "Lots of old specimens, things like rotten potatoes in bottles that were collected by famous pathologists."
Subscribe now for more of Smithsonian's coverage on history, science and nature.









Comments