• Smithsonian
    Institution
  • Travel
    With Us
  • Smithsonian
    Store
  • Smithsonian
    Channel
  • goSmithsonian
    Visitors Guide
  • Air & Space
    magazine

Smithsonian.com

  • Subscribe
  • History & Archaeology
  • Science
  • Ideas & Innovations
  • Arts & Culture
  • Travel & Food
  • At the Smithsonian
  • Photos
  • Videos
  • Games
  • Shop
  • Human Behavior
  • Mind & Body
  • Our Planet
  • Technology
  • Space
  • Wildlife
  • Art Meets Science
  • Science & Nature

How Did Plants Develop Photosynthesis?

For a large chunk of the Earth’s existence, flora have used the Sun’s light to turn the planet green

| | | Reddit | Digg | Stumble | Email |
  • By Henry Fountain
  • Smithsonian magazine, March 2013, Subscribe
 
$Alt
(Mark Zibert / Vaughan Hannigan)

More from Smithsonian.com

  • INFOGRAPHIC: Light By the Numbers

When the last Apollo mission was on its way to the Moon four decades ago, one of the astronauts took a snapshot that is among the most famous in NASA history. It is known as the “blue marble” photograph because it shows Earth, from about 28,000 miles away, as a bright, swirling and mostly blue sphere. The dominant color wasn’t surprising—it’s the color of the oceans, which cover nearly three-quarters of the planet.

But Earth is hardly unique in having water. It is everywhere in the universe; even that dusty neighbor Mars, it is now apparent, was once awash.

What sets Earth apart isn’t colored blue but green, a green that is best appreciated not from space, but up close—in a fresh-cut suburban lawn, in lily pads on a frog pond, in a stand of firs on a mountainside. It’s the green of chlorophyll, and of photosynthesis.

Photosynthesis is nature’s take on solar power, its way of making use of all that light energy that comes from the Sun. Modern solar cells do this with semiconductors, and the harvest consists of electrons, which flow after they are excited by photons of light. In nature the electrons are excited in the pigment chlorophyll, but that’s only a first step. The energy is ultimately stored in the chemical bonds of the sugars that, along with oxygen, are the products of photosynthesis.

Those products transformed Earth, the oxygen sweetening the atmosphere and the sugars providing food. Together, they allowed for a long and slow blooming of life that eventually included many organisms—humans among them—that cannot photosynthesize.

Plants have been using light in this primal way for a large chunk of Earth’s existence. But just how did they gain the ability to photosynthesize?

The short answer is they stole it, about a billion and a half years ago, when single-celled organisms called protists engulfed photosynthesizing bacteria. Over time, through the transfer of genes aided by a parasite, the absorbed bacteria became a functional part of the protist, enabling it to transform sunlight into nourishment. “The three of them made it happen,” says Rutgers University evolutionary biologist Debashish Bhattacharya. “The tree of life involves a lot of invention and stealing.” A version of this sunlight-driven, chlorophyll-containing little machine exists to this day in plant cells. It is called a chloroplast.

Scientists are still learning about the complex process, called endosymbiosis, by which a cell, like a protist, for some reason absorbs other living things to create something quite new in biology.

Genetic analyses of algae conducted by Bhattacharya suggest that the pivotal endosymbiotic event that endowed plants with the engine of photosynthesis happened just once in our planet’s early history, in a common ancestor—a single microscopic protist that made green the most important color on Earth.

This latest finding satisfies a basic principle of science: The simplest explanation is usually the best one. The idea that endosymbiosis would have occurred once—before the protists diverged and evolved into different species— is far more sensible than the alternative: that endosymbiosis reoccurred with each new emerging species.

Acquiring the machinery of photosynthesis gave those early organisms a huge evolutionary advantage, one they readily exploited. Over the millions of years that followed, this ability to make use of the Sun’s energy helped give rise to the great diversity of living things on the planet. Then, as now, light equaled life.


When the last Apollo mission was on its way to the Moon four decades ago, one of the astronauts took a snapshot that is among the most famous in NASA history. It is known as the “blue marble” photograph because it shows Earth, from about 28,000 miles away, as a bright, swirling and mostly blue sphere. The dominant color wasn’t surprising—it’s the color of the oceans, which cover nearly three-quarters of the planet.

But Earth is hardly unique in having water. It is everywhere in the universe; even that dusty neighbor Mars, it is now apparent, was once awash.

What sets Earth apart isn’t colored blue but green, a green that is best appreciated not from space, but up close—in a fresh-cut suburban lawn, in lily pads on a frog pond, in a stand of firs on a mountainside. It’s the green of chlorophyll, and of photosynthesis.

Photosynthesis is nature’s take on solar power, its way of making use of all that light energy that comes from the Sun. Modern solar cells do this with semiconductors, and the harvest consists of electrons, which flow after they are excited by photons of light. In nature the electrons are excited in the pigment chlorophyll, but that’s only a first step. The energy is ultimately stored in the chemical bonds of the sugars that, along with oxygen, are the products of photosynthesis.

Those products transformed Earth, the oxygen sweetening the atmosphere and the sugars providing food. Together, they allowed for a long and slow blooming of life that eventually included many organisms—humans among them—that cannot photosynthesize.

Plants have been using light in this primal way for a large chunk of Earth’s existence. But just how did they gain the ability to photosynthesize?

The short answer is they stole it, about a billion and a half years ago, when single-celled organisms called protists engulfed photosynthesizing bacteria. Over time, through the transfer of genes aided by a parasite, the absorbed bacteria became a functional part of the protist, enabling it to transform sunlight into nourishment. “The three of them made it happen,” says Rutgers University evolutionary biologist Debashish Bhattacharya. “The tree of life involves a lot of invention and stealing.” A version of this sunlight-driven, chlorophyll-containing little machine exists to this day in plant cells. It is called a chloroplast.

Scientists are still learning about the complex process, called endosymbiosis, by which a cell, like a protist, for some reason absorbs other living things to create something quite new in biology.

Genetic analyses of algae conducted by Bhattacharya suggest that the pivotal endosymbiotic event that endowed plants with the engine of photosynthesis happened just once in our planet’s early history, in a common ancestor—a single microscopic protist that made green the most important color on Earth.

This latest finding satisfies a basic principle of science: The simplest explanation is usually the best one. The idea that endosymbiosis would have occurred once—before the protists diverged and evolved into different species— is far more sensible than the alternative: that endosymbiosis reoccurred with each new emerging species.

Acquiring the machinery of photosynthesis gave those early organisms a huge evolutionary advantage, one they readily exploited. Over the millions of years that followed, this ability to make use of the Sun’s energy helped give rise to the great diversity of living things on the planet. Then, as now, light equaled life.

    Subscribe now for more of Smithsonian's coverage on history, science and nature.


Related topics: Biology


| | | Reddit | Digg | Stumble | Email |
 

Add New Comment


Name: (required)

Email: (required)

Comment:

Comments are moderated, and will not appear until Smithsonian.com has approved them. Smithsonian reserves the right not to post any comments that are unlawful, threatening, offensive, defamatory, invasive of a person's privacy, inappropriate, confidential or proprietary, political messages, product endorsements, or other content that might otherwise violate any laws or policies.

Comments (1)

Since you decided not to publish my gentle letter to the editor, I will quickly get to the point: How can a magazine, supposedly devoted to Science, publish an article on photosynthesis and NOT ONCE mention Carbon Dioxide? I think you are more devoted to your politics, which classify this compound as a pollutant, and to-your-end omit the truth that without Carbon Dioxide we would all starve.

Posted by Karen McGuire on May 8,2013 | 10:48 PM



Advertisement


Most Popular

  • Viewed
  • Emailed
  • Commented
  1. The Scariest Monsters of the Deep Sea
  2. 16 Photographs That Capture the Best and Worst of 1970s America
  3. Jack Andraka, the Teen Prodigy of Pancreatic Cancer
  4. The Ten Most Disturbing Scientific Discoveries
  5. Microbes: The Trillions of Creatures Governing Your Health

  6. Ten Inventions Inspired by Science Fiction
  7. What is Causing Iran’s Spike in MS Cases?

  8. How Titanoboa, the 40-Foot-Long Snake, Was Found
  9. Photos of the World’s Oldest Living Things
  10. Top Ten Most-Destructive Computer Viruses
  1. When Continental Drift Was Considered Pseudoscience
  2. Why Procrastination is Good for You
  3. Microbes: The Trillions of Creatures Governing Your Health

  1. Life on Mars?
  2. The Spotted Owl's New Nemesis
  3. Breeding Cheetahs
  4. Ten Plants That Put Meat on Their Plates
  5. How Titanoboa, the 40-Foot-Long Snake, Was Found

View All Most Popular »

Advertisement

Follow Us

Smithsonian Magazine
@SmithsonianMag
Follow Smithsonian Magazine on Twitter

Sign up for regular email updates from Smithsonian.com, including daily newsletters and special offers.

In The Magazine

May 2013

  • Patriot Games
  • The Next Revolution
  • Blowing Up The Art World
  • The Body Eclectic
  • Microbe Hunters

View Table of Contents »






First Name
Last Name
Address 1
Address 2
City
State   Zip
Email


Travel with Smithsonian




Smithsonian Store

Stars and Stripes Throw

Our exclusive Stars and Stripes Throw is a three-layer adaption of the 1861 “Stars and Stripes” quilt... $65



View full archiveRecent Issues


  • May 2013


  • Apr 2013


  • Mar 2013

Newsletter

Sign up for regular email updates from Smithsonian magazine, including free newsletters, special offers and current news updates.

Subscribe Now

About Us

Smithsonian.com expands on Smithsonian magazine's in-depth coverage of history, science, nature, the arts, travel, world culture and technology. Join us regularly as we take a dynamic and interactive approach to exploring modern and historic perspectives on the arts, sciences, nature, world culture and travel, including videos, blogs and a reader forum.

Explore our Brands

  • goSmithsonian.com
  • Smithsonian Air & Space Museum
  • Smithsonian Student Travel
  • Smithsonian Catalogue
  • Smithsonian Journeys
  • Smithsonian Channel
  • About Smithsonian
  • Contact Us
  • Advertising
  • Subscribe
  • RSS
  • Topics
  • Member Services
  • Copyright
  • Site Map
  • Privacy Policy
  • Ad Choices

Smithsonian Institution