How Biomimicry is Inspiring Human Innovation
Creative minds are increasingly turning to nature—banyan tree leaves, butterfly wings, a bird's beak— for fresh design solutions
- By Tom Vanderbilt
- Smithsonian magazine, September 2012, Subscribe
The first thing you notice about the entomology collections department, Lepidoptera division, at the Smithsonian’s Museum of Natural History is a faint, elusively familiar odor. Mothballs. I briefly contemplated the cosmic irony of mothballs in a room full of moths (and butterflies, a lineage of moths evolved to fly during the day) before turning to Bob Robbins, a research entomologist. “There are many insects that will eat dried insects,” he said, “so traditionally you kept those pests out using naphthalene, or mothballs.”
The mothballs have been phased out (in favor of freezing new specimens to kill any pests), but that lingering smell, as well as the endless drawers of insects pinned under glass and carefully arrayed in row after row of steel cabinets for taxonomic posterity, only heightens the sense of age in the hushed chamber. Time seems to stand as still as the millions of specimens.
But pore through those drawers, through the precisely spaced squadrons of swallowtails and sunset moths, and a different idea begins to form: This is not a dormant repository, but a laboratory that investigates an extraordinarily successful enterprise. Over some 150 million years, these “products” have been ruthlessly prototyped, market-tested, upgraded, refined and otherwise made new and improved as the world around them changed. Each of these fragile specimens is a package of innovation waiting to be understood and adapted.
This is the idea behind the increasingly influential discipline of biomimicry: that we human beings, who have been trying to make things for only the blink of an evolutionary eye, have a lot to learn from the long processes of natural selection, whether it’s how to make a wing more aerodynamic or a city more resilient or an electronic display more vibrant. More than a decade ago, an MIT grad named Mark Miles was dabbling in the field of micro-electromechanical and materials processing. As he paged through a science magazine, he was stopped by an article on how butterflies generate color in their wings. The brilliant iridescent blue of the various Morpho species, for example, comes not from pigment, but from “structural color.” Those wings harbor a nanoscale assemblage of shingled plates, whose shape and distance from one another are arranged in a precise pattern that disrupts reflective light wavelengths to produce the brilliant blue. To create that same blue out of pigment would require much more energy—energy better used for flying, feeding and reproducing.
Miles wondered if this capability could be exploited in some way. Where else might you want incredibly vivid color in a thin package? Of course: in an electronic device display. Qualcomm, which acquired the company Miles had formed to develop the technology, used it in its Mirasol display. “We exploit the phenomena of optical interference,” says Brian Gally, senior director of product management at Qualcomm. Lurking beneath the glass surface is a vast array of interferometric modulators, essentially microscopic (10 to 50 microns square) mirrors that move up and down, in microseconds, to create the proper color.
Like the butterfly’s wings, “the display is taking the white ambient light around us, white light or sunlight, and through interference is going to send us back a color image,” Gally says. Unlike conventional LCD screens, the Mirasol doesn’t have to generate its own light. “The display brightness just automatically scales with ambient light.” As a result, the Mirasol consumes a tenth of the power of an LCD reader. Qualcomm used the display in an e-reader and is offering it for license to other companies.
Though biomimicry has inspired human innovations for decades—one of the most often-cited examples is Velcro, which the Swiss engineer Georges de Mestral patented in 1955 after studying how burs stuck to his clothes—better technology and more nuanced research have enabled increasingly complex adaptions. Design software created by German researcher Claus Mattheck—and used in Opel and Mercedes cars—reflects the ways trees and bones distribute strength and loads. A fan created by Pax Scientific borrows from the patterns of swirling kelp, nautilus and whelks to move air more efficiently. A saltwater-irrigated greenhouse in the Qatari desert will use condensation and evaporation tricks gleaned from the nose of a camel. Now, thanks in part to continuing innovations in nanoscale fabrication, manufacturers are bringing an expanding array of products to market.
Biomimicry isn’t itself a product but a process, drawing on natural organisms and processes in order to spark innovation. Organizations and even cities can look to ecosystems for inspiration, says Tim McGee, a biologist and member of Biomimicry 3.8, a Montana-based consultancy. In Lavasa—described as “India’s first planned hill city” by its developers, who hope to eventually build homes for more than 300,000 people there—the guild consulted with landscape architects. Thus the planting strategy included deciduous trees, forming a canopy to catch, and then reflect, through evaporation, nearly a third of the monsoon rain that hits it. That effect acts “like an engine that drives the monsoon inland,” says McGee, which helps prevent drought there. The hydrodynamically efficient shape of banyan tree leaves influenced the design of a better water-dispatching roof shingle, while water divertment systems were inspired by the ways harvester ants direct water away from their nests. The first Lavasa “town” has been completed, with four more projected to follow by 2020.
Subscribe now for more of Smithsonian's coverage on history, science and nature.









Comments (5)
Biomimicry is very intersting science
Posted by Sana on January 4,2013 | 05:10 PM
“What if, in New York City, when it rained, the water that went into the East River was cleaner than when it fell?” I understand this is precisely/exactly happening. Storm water is directed into constructed gardens and wetlands of some of the public schools where it is "polished" before transiting to the East and Hudson rivers. Students study the process thereby learning some science as well as introducing some green space into their world.
Posted by john on September 5,2012 | 11:18 AM
Elegant writing on a topic that has been close to our work since the mid-1990s, with refreshing cases. One of the very few beneficial outcomes of my brother's diagnosis of ALS in 1997 (other than personal growth and relationship building) was that I happened to be engaged in our small private lab in designing and testing computer networks at the time, and of course he and ALS were constantly in our thoughts. The deep dive into this highly complex disease resulted in no assistance whatsoever to him (Brett Montgomery), unfortunately, but has influenced my work considerably since in understanding neural networks for applications in CS. Earlier this year we entered the pilot phase of our organizational system after other functionality in the 'stack' caught up to the practical needs of detail and scale. Nature has provided such opportunity to learn and apply to difficult challenges. It would be a crime against nature indeed not to accept this gift and make good use of it. Let's hope the clues and curriculum can be employed to preserve the source of the fountain of knowledge itself, including our still primitive species. That would be hope worthy of the hype. Thanks for the nice work and to WSJ CIO Journal for the lnk. Mark Montgomery @kyield
Posted by Mark Montgomery on August 31,2012 | 03:14 PM
Seems so environmentally sound it should inform every aspect of production.
Posted by Margaret on August 31,2012 | 03:00 AM
Interesting beyond known wisdom is the viability of color and the way that radiation behaves. Could it be because the way that we perceive color by the human eye actually does it actuallt have characteristic indivudual functions? The speed of light as we know it here on our planet may just be a mask or curtain for other worldly existance, existing in a tempo not perceived, like the wind that cannot be seen only known by its effects.
Posted by Talisman_real on August 30,2012 | 04:19 PM