Bioluminescence: Light Is Much Better, Down Where It’s Wetter
From tracking a giant squid to decoding jellyfish alarms in the Gulf, a depth-defying scientist plunges under the sea
- By Abigail Tucker
- Smithsonian magazine, March 2013, Subscribe
(Page 2 of 4)
Next to the photograph of her mother and the horse-drawn plow is one of Widder herself. She’s sealed in a bulky one-person submersible diving suit, more like an astronaut’s spacesuit than any normal diving gear. She is about to embark on one of her first deep-sea dives, and she’s beaming.
That dive marked the rare case where chance, rather than force of will, catalyzed one of Widder’s adventures. She studied biology at Tufts and received a PhD in neurobiology from the University of California at Santa Barbara. As a graduate student, she worked on the membrane biophysics of dinoflagellates, which piqued her interest in bioluminescence, and when her adviser received a grant for a spectrophotometer, a temperamental machine used to measure light, she “just started messing with it to figure it out” and “became the lab expert.” Another scientist requisitioned the new gadget for a 1982 research cruise off the coast of California; Widder went as part of the package.
She had unwittingly stowed away on a landmark mission. Until that time, marine biologists (William Beebe and a few others excepted) had relied on net samples to glimpse deep-sea life, a rather misleading method: Light-bearers, especially, are so delicate they may disintegrate in standard nets, often exhausting their bioluminescence before they reach the surface. But this trip would deploy the WASP, a motorized “atmospheric dive suit” that offshore oil companies had developed to repair underwater rigs. Biologists wanted to use it to observe sea animals instead.
Bruce Robison, the trip’s chief scientist, now at the Monterey Bay Aquarium Research Institute, had handpicked a crack team of scientists, mostly young, gung-ho and male, as potential WASP pilots. One by one they descended more than 1,000 feet in the suit, tethered to the ship by a long cable, while Widder remained at the surface, listening to their jubilant whoops over the radio. “I was just a postdoc, pretty low on the totem pole,” she says. Toward the end of the voyage, Robison asked Widder, by then nearly frantic with enthusiasm, if she wanted to train as a pilot for the next trip.
Her first dive, in the Santa Barbara Channel in 1984, was at sunset. As she sank, the view changed from cornflower blue to cobalt to black. Even with crushing tons of water overhead, she did not experience the clammy panic that makes some pilots’ first dive their last. Passing ethereal jellyfish and shrimp with ultralong antennae that they appeared to ride like skis, she drifted down 880 feet, where sunshine was just a smoggy haze overhead. Then, “I turned out the lights.”
She was hoping for a flash here, a flash there. But what she saw in the darkness rivaled Van Gogh’s Starry Night—plumes and blossoms and flourishes of brilliance. “There were explosions of light all around, and sparks and swirls and great chains of what looked like Japanese lanterns,” she remembers. Light popped, smoked and splintered: “I was enveloped. Everything was glowing. I couldn’t distinguish one light from another. It was just a variety of things making light, different shapes, different kinetics, mostly blue, and just so much of it. That’s what astonished me.”
Why was there so much light? Who was making it? What were they saying? Why wasn’t anybody studying this stuff? “It seemed like an insane use of energy, and evolution is not insane,” she says. “It’s parsimonious.” All too soon the surface crew began winching her in.
On a subsequent expedition to Monterey Canyon she would pilot a dozen five-hour dives, and with each descent she grew more spellbound. Sometimes, the mystery animals outside were so bright that Widder swore the diving suit was releasing arcs of electricity into the surrounding water. Once, “the whole suit lit up.” What she now believes was a 20-foot siphonophore—a kind of jellyfish colony—was passing overheard, light cascading from one end to the other. “I could read every single dial and gauge inside the suit by its light,” Widder remembers. “It was breathtaking.” It went on glowing for 45 seconds.
She’d lashed a blue light to the front of the WASP, hoping to stimulate an animal response. Underwater, the rod blinked frenetically, but the animals all ignored her. “I’m sitting in the dark with this bright blue glowing thing,” Widder says. “I just couldn’t believe nothing was paying attention to it.”
Decoding the bioluminescent lexicon would become her life’s work. Gradually, it dawned on her that before she learned to speak with light, she needed to listen.
***
Widder leads me into a light-tight closet at the back of her lab, then rummages in the fridge for a flask of seawater. It looks clear and still and not too promising. Then she turns off the light and gives the water a little swirl. A trillion sapphires ignite.
This glittering concoction, the color of mouthwash, is full of dinoflagellates, the same planktonic animals that enchant Puerto Rico’s bioluminescent bays and bathe speeding dolphins in otherworldly blue light. The chemistry behind the glow, shared by many bioluminescent creatures, involves an enzyme called luciferase, which adds oxygen to a compound called luciferin, shedding a photon of visible light—a bit like what happens when you snap a glow stick. Stimulated by Widder’s swirl, the dinoflagelletes sparkle to discourage whatever has nudged them—be it a predatory copepod or a kayak paddle—in the hopes that it will forfeit its meal.
Larger animals exhibit the same startle response: Lit up along their light grooves, gulper eels look like cartoon electrocutions. Widder eventually realized that the Vegas-like displays she saw from the WASP were mostly examples of startle responses stimulated by contact with her diving suit.
Only a tiny percentage of terrestrial life is bioluminescent—fireflies, most famously, but also some millipedes, click beetles, fungus gnats, jack-o’-lantern mushrooms and a few others. The one known luminous freshwater dweller is a lonely New Zealand limpet. Most lake and river residents don’t need to manufacture light; they exist in sunlit worlds with plenty of places to meet mates, encounter prey and hide from predators. Sea animals, on the other hand, must make their way in the obsidian void of the ocean, where sunlight decreases tenfold every 225 feet, and disappears by 3,000: It’s pitch-black even at high noon, which is why so many sea creatures express themselves with light instead of color. The trait has evolved independently at least 40 times, and perhaps more than 50, in the sea, spanning the food chain from flaring zooplankton to colossal squid with large light organs on the backside of their eyeballs. Mollusks alone have seven distinct ways of making light, and new incandescent beings are being spotted all the time.
Scientists today believe that bioluminescence is always a means of influencing other animals—a signal fire in the deep. The message must be important enough to outweigh the risks of revealing one’s location in the blackness. “It’s the basic stuff of survival,” Widder says. “There’s incredible selective pressure on the visual environment, where you have to worry about what’s above you if you’re a predator and what’s below you if you’re prey. Often, you’re both.”
In addition to activating their startle responses, hunted animals also use light as camouflage. Many midwater predators have permanently upward-pointed eyes, scanning overhead for prey silhouetted against the downwelling sunlight. Viewed thus, even the frailest shrimp becomes an eclipse. So prey animals dapple their bellies with light organs called photophores. Activating these bright mantles, they can blend in with the ambient light, becoming effectively invisible. Fish can snuff out their stomachs at will, or dim them if a cloud passes overhead. The Abralia squid can match the color of moonlight.
Luring food is the second bioluminescent motive. The aptly named flashlight fish sweeps the darkness with its intense cheek lights, looking for tasty neighbors. In front of its cruel jaws, the viperfish dangles a glowing lure on the end of a mutated fin ray that resembles, to hungry passersby, a resplendent piece of fish poop—a favored deep-sea snack. (Rather than kindling their own light, some of these predators enjoy symbiotic relationships with bioluminescent bacteria, which they culture inside light-bulb-like cavities that they can snuff with sliding flaps of skin or by rolling the light organs up into their heads, “exactly like the headlights of a Lamborghini,” Widder says.)
Finally, light is used to recruit mates. “We think they flash specific patterns, or have species-specific-shaped light organs,” Widder says. Female octopods sometimes set their mouths ablaze with glowing lipstick; Bermuda fireworms enliven the shallows with ravelike green orgies. Most romantic of all is the love light of the anglerfish, one of Widder’s favorite animals. The female, a fearsome gal with a toothy underbite, brandishes a lantern of glowing bacteria above her head. The male of her species, tiny and lanternless but with sharp eyes, swims toward her and smooches her side; his lips become fused to her body until she absorbs everything but his testes. (You might say that she will always carry a torch for him.)
Single Page « Previous 1 2 3 4 Next »
Subscribe now for more of Smithsonian's coverage on history, science and nature.









Comments (2)
In my previous comment I should have written Discovery channel instead of National Geographic channel. The Giant Squid was shown on the Discovery channel, and that is where I saw Ms. Widder.
Posted by Kathy on February 25,2013 | 03:06 PM
"Decoding the bioluminescent lexicon would become her life’s work. Gradually, it dawned on her that before she learned to speak with light, she needed to listen." Edith Widder is truly a trailblazer. I saw her on the National Geographic special about tracking the Giant Squid. The Eye-in-the-Sea and e-jelly that she developed are truly ingenious ways to capture the deep's secrets. Thank-you Abigail for such a wonderfully written story about Ms. Widder: her career and current endeavors with ORCA.
Posted by Kathy on February 23,2013 | 07:55 PM