A Century of Flight - Taking Wing

From the Wright brothers' breakthrough 100 years ago this month to the latest robot jets, the past century has been shaped by the men and women who got us off the ground

Smithsonian Magazine | Subscribe

(Continued from page 2)

Whittle’s jet engine was first tested in the lab in 1937 and, four years later, powered a specially designed fighter at an air base near Gloucester, England. Pilots watching the top-secret test flight from the side of the damp airfield were baffled. “My God, chaps, I must be going round the bend,” one officer reportedly said later. “It hadn’t got a propeller!”

Meanwhile, a German engineer named Hans von Ohain had been developing his own jet engine. In 1944, a handful of jet fighters and bombers, including the Messerschmitt Me 262—the world’s first operational jet—saw service in the Luftwaffe. In America, military brass put jets on a back burner, convinced the war would be won with conventional airplanes, and lots of them. Diverting resources to work on the unproven jet, authorities insisted, would be a waste of time. But after the Allies swept through Germany at the end of the war, they recruited dozens of German jet and rocket scientists, including Wernher von Braun, and then took them to the United States in “Operation Paper- clip.” The plan laid the groundwork for decades of U.S.-led innovation, from immediately useful jet technology to advances in rocketry that would ultimately make the space program possible.

Jet propulsion technology was the most important thing in aviation since the Wrights. “The jet wasn’t a refinement of anything, it was a complete breakthrough,” says NASM’s Anderson. “A whole second era of aviation was opened up by Whittle and von Ohain.” Yet the jet’s inventors never got the recognition the Wrights enjoyed. Whittle’s patents were appropriated by the British government during the war, and von Ohain quietly began a new career in 1947—as a U.S. Air Force propulsion scientist.

Yet it would take years of painstaking work to turn the jet plane into reliable transportation. In the early days, fighter jet pilots had a one in four chance of dying in an airplane accident. Supersonic speeds, at least about 650 mph, required rethinking conventional notions about aerodynamics, control and efficiency. The design of the X-1, which broke the sound barrier over California’s MurocDryLake in 1947, was based on the .50-caliber bullet, an object that engineers knew went supersonic. It was flown by laconic West Virginian test pilot Chuck Yeager, a veteran World War II ace who counted two Messerschmitt 262s among his kills.

The bravery of those test pilots is what we tend to remember of jet travel’s early days. But perhaps more important was the massive government expenditure on aviation and space research in the 1950s and ’60s. By 1959, the aviation industry was one of the largest employers in America’s manufacturing sector, with more than 80 percent of its sales in the decade and a half after World War II to the military. America’s aviation and space successes became potent symbols in the cold war, and the booming aerospace industry got what amounted to a blank check from the government. After all, as a character in the movie version of The Right Stuff observed, “No bucks, no Buck Rogers.”

“Government investment in things related to flight drove a whole broad front of technological development,” Crouch says. “One thing after another developed because it was somehow related to flight, and governments were spending money on it.” Computers became ubiquitous aviation tools, from aiding design of complex aircraft to forming global ticketing networks. The jet engine also took civil aviation to new heights—and speeds. Boeing introduced a prototype of the 707 passenger jet in 1954 that could fly more than 600 mph (three times faster than the DC- 3). Four years later, Pan American began regular 707 service from New York to Paris, ushering in the jet age.

As the hard-won lessons of military test pilots yielded safer, more stable jet designs, the very shape of the world began to change. From massive B-52 nuclear bombers capable of flying nonstop from Omaha to Moscow in 11 hours, to passenger jets that could cross the Atlantic in 7 hours, the jet made international travel accessible to almost everyone. Big passenger jets became common—the 452-passenger Boeing 747 debuted in 1969— and the number of people who flew climbed steadily each year.

Supersonic passenger planes were the next obvious frontier. But with the exceptions of the Soviet Tupolev TU-144, which first flew in December 1968, and the Concorde, a joint venture between France and Britain that took off two months later, supersonic passenger travel would remain largely a novelty. Both planes were a bust financially. In almost 30 years flying across the Atlantic at twice the speed of sound, the gas-guzzling Concorde never broke even. Air France ceased regularly scheduled Concorde service this past May and British Airways in October. Nonetheless, entrepreneurs and politicians have continued to float futuristic (and so far impractical) ideas, like the Orient Express, a massive supersonic transport that would carry up to 200 passengers from New York to Beijing in two hours, skipping like a stone across the earth’s atmosphere at Mach 5.

Attaining ever-higher speeds hasn’t necessarily been the highest priority for the military. Since the 1970s, military planners have emphasized maneuverability and stealth. But the new planes, with smaller, angled wings and control surfaces, tended to be unstable. That changed with the development in the 1970s of onboard computers, or “fly-by-wire” systems, in aviation lingo, capable of making thousands of adjustments per second to rudders and other control surfaces. The Northrop B-2 stealth bomber and the Lockheed F-117ANighthawk stealth fighter, bizarre matte-black bundles of strange angles and stubby wings designed to disappear from enemy radar, seem to defy the laws of aerodynamics with the help of sophisticated software. The ultimate fly-by-wire technology, unmanned aerial vehicles, or UAVs, are remote-controlled drones, which have already seen service in the skies over Afghanistan and Iraq.

To many aviation experts, airplane technology seems to have hit another lull in the rate of progress. “That’s the big question: Is the airplane in its form now a mature technology?” says NASM curator Jeremy Kinney. “The airlines are doing very well with wide-body, turbofan planes carrying hundreds of people, and the military is essentially innovating refinements. Is there even a next plateau?”

About Andrew Curry
Andrew Curry

Andrew Curry is a Berlin-based journalist who writes about science and history for a variety of publications, including National Geographic, Nature, and Wired. He is a contributing editor at Archaeology and has visited archaeological excavations on five continents. (Photo Credit: Jennifer Porto)

Read more from this author |

Comment on this Story

comments powered by Disqus