A Century of Flight - Taking Wing | People & Places | Smithsonian
Current Issue
November 2014 magazine cover
Subscribe

Save 81% off the newsstand price!

A Century of Flight - Taking Wing

From the Wright brothers' breakthrough 100 years ago this month to the latest robot jets, the past century has been shaped by the men and women who got us off the ground

Smithsonian Magazine | Subscribe

As an Air Force test pilot, Lt. Col. Dawn Dunlop has flown dozens of different airplanes, from the nimble F-15E Strike Eagle fighter to the massive C-17 transport jet to the Russian MIG-21. Stationed at Edwards Air Force Base, she’s part of the elite squadron that is putting the cutting-edge F/A-22 Raptor, a jet fighter, through its paces. But the aircraft that Dunlop has had the toughest time controlling was a replica of the Wright brothers’ 1902 glider. More than once she crash-landed the muslin-skinned craft onto the windswept sands of Kitty Hawk, North Carolina. “It was a real eye-opener,” Dunlop recalls of the (bruising) experience last year, part of a commemorative Air Force program. “They’ve made it so simple to fly today we’ve forgotten how difficult it was back then.”

From This Story

This month, much of the world will be revisiting “back then” as numerous ceremonies, books and reenactments mark the invention of powered flight. It was just after 10:30 in the morning on December 17, 1903, when Orville Wright, an Ohio inventor and bicycle shop owner, took off into a near-freezing head wind for a 12-second propeller-driven trip—a 120-foot voyage that may well have launched the modern age. “Aviation is the definitive technology of the 20th century,” says Tom Crouch, senior curator of aeronautics at the Smithsonian National Air and Space Museum (NASM) and author of Wings: AHistory of Aviation, from Kites to the Space Age. “Flight symbolized our deepest aspirations, like freedom and control of our destiny.”

Amid all the celebrations of the long-anticipated centennial, it might be easy to lose sight of just how amazing those landmark early flights were. As Dunlop discovered, Wright aircraft were dangerous. Frail assemblies of wire, wood and cloth powered by homemade engines, they were reluctant birds, difficult to steer and easy to crash. In fact, planes based on the Flyer that Orville Wright coaxed off the ground would kill dozens of pilots in coming years. Still, the craft embodied what we recognize today as the basics of flight, and though aviation has advanced far beyond anything the brothers might have first imagined—in 2000, airplanes carried more than three billion passengers—the Wrights anticipated a surprising range of crucial developments. “Flying that glider was a real challenge,” Dunlop says, “but when you take yourself back, you realize what a brilliant design it really was.”

From the ancient Greeks, whose mythological tale of Icarus’ wax wings melting when he soared too close to the sun, to carvings left by the South American Incan civilization on the walls of its holy Andean citadel of Machu Picchu, humanity has long been fascinated by the idea of flying. Renaissance paintings and frescoes of Christ’s ascension into heaven “had a concept of air as a thing to be worked,” says Richard Hallion, a former NASM curator and Air Force historian, and author of Taking Flight: Inventing the Aerial Age from Antiquity through the First World War. “Christ is shown lifting off like a rocket, and the Apostles all have windblown garments. Angels have muscular wings in proportion to their size.” Among the most startling early visions of powered human flight are Leonardo da Vinci’s 15th-century sketches of mechanical flapping wings and crude helicopters. Yet Leonardo’s ideas never got off the page.

The first person to apply scientific principles to the problems of flight was George Cayley, an English baronet known today as the father of aerial navigation. Born in 1773, he built the first glider to go aloft with a person aboard—his coachman, in 1853—and correctly identified lift, drag and thrust as the main forces to be mastered for powered flight. Cayley, who published his research in the likes of Nicholson’s Journal of Natural Philosophy, Chemistry, and the Arts, was the first aviation experimenter to use research methods that would be familiar to today’s scientists and engineers, Peter Jakab, chairman of NASM’s aeronautics division, writes in his book Visions of a Flying Machine.

The first hot-air balloon with passengers took to the air in 1783, when its inventors, the Montgolfier brothers, sent a sheep, a rooster and a duck soaring for eight minutes in the sky over Versailles. For the next century, lighter-than-air balloons and airships, unwieldy or impossible to control, were considered the only realistic way to get aloft. Meanwhile, inventors kept struggling with the challenge of powered, heavier- than-air flight. Some built gliders shaped like moths or bats; others built massive, steam-powered aircraft that were unflyable; one such contraption collapsed under its own weight. None “had the slightest influence on the invention of the airplane,” Crouch writes.

Some pioneers were on the right track. The German Otto Lilienthal built 16 different gliders between 1891 and 1896, making almost 2,000 flights in the low hills outside Berlin. In his experiments, he accumulated data on lift and would inspire the Wright brothers, but his death in 1896 in one of his own gliders had a dampening effect on aviation. Convinced that powered flight was a dangerous folly, many Europeans working on the problem aborted their efforts.

Unlike their predecessors, the Wrights realized that control of an aircraft was at least as important as lift and thrust. Their crucial inspiration was understanding that aircraft would fly in three dimensions: climbing and descending (pitch), left and right (yaw), and roll (the banking, tilting motion that in conjunction with the rudder sends a plane into dramatic, sweeping turns). Roll, especially, had been largely ignored or unimagined by their predecessors. Hallion writes that the Wrights, as cyclists, visualized an airplane turning much as a bike rider makes a hard turn—by leaning into it. John Anderson, curator of aerodynamics at the National Air and SpaceMuseum and author of The Airplane—A History of Its Technology, says the Wrights’ “longest-lasting technological contribution is purely and simply flight control. Wilbur Wright was the first person to understand how an airplane turned.”

Simple rudders, like those used to steer boats through water, and elevators (like rudders, except horizontal) were enough to move a plane up and down or left and right. But the third dimension, making a plane bank and turn, required a wholly new approach. The Wrights’ first breakthrough was realizing that air flowing across the wings could be used to push one wing down while it lifted the other—“rolling” the plane through a banked, leaning turn. Their next was figuring out how to get both wings to move the right way at the right time—a beautifully simple concept called wing-warping, which involved twisting the entire wing to facilitate turning.

The Wrights’ combination of creativity and engineering skill continues to amaze scholars today. “They had the ability to visualize machines that hadn’t been built yet,” Crouch says. From the time they hit upon wing-warping as the solution for moving an aircraft in three dimensions in the spring of 1899, it was only four and a half years until their epic, if brief, powered flight at Kitty Hawk. As Hallion puts it, “The Wrights, when they got their act together, moved with incredible speed.”

Tags

Comment on this Story

comments powered by Disqus