Current Issue
May 2014 magazine cover
Subscribe

Save 81% off the newsstand price!

Special Report
Saul Griffith’s latest venture, Otherlab, is a research company reminiscent of the “invention factory” created by Thomas Edison. (Otherlab)

Saul Griffith’s Fascinating Ideas About the Future of Energy

Intestine-like natural gas tanks and a solar technology based on air and plastic are two projects in the works at Griffith’s Otherlab

Tell me about the team and environment you’ve cultivated here at Otherlab. How are they helping to further those larger goals?

Otherlab is an independent research company. We create technologies. Sometimes those technologies become their own independent companies, and we spin them out, or sometimes we license those technologies to other companies to do things with.

We’re about 25 people. We’re right in the middle of urban San Francisco. We have about 95 percent walking or bicycling commuters to work. So we’re a low-carbon office, just in terms of the transportation we use.

We have a number of projects—two specifically in the energy space right now. We would like to have a dozen, partly because we’ve done so much research on how we use energy and how we create it, that we have this nice database of where technical contributions can be made to change that.

There are really two classes of solar energy generation: One is photovoltaics; the other is concentrated solar thermal, which means you heat something up and turn that heat into electricity [through] a turbine or some similar mechanism. We are working on a heliostat technology—which means a mechanism for following where the sun is in the sky—that will make photovoltaics more efficient, because the photovoltaics will be more ideally oriented towards the sun. You get about 20 or 30 percent more energy out of the same solar cell if you can cheaply track it.

Perhaps more importantly, it takes about 80 percent of the cost out of the heliostat field of traditional solar thermal. These are these huge plants in the desert. The heliostat field is about 50 percent of the cost of the whole plant, and we want to take about 80 percent of the cost out of that. So, net, hopefully make a 30 or 40 percent decrease in the cost of that type of electricity.

Is most of that cost in the materials, or in some advanced technology?

For all energy technologies, they are at such enormous scales that really the cost of the machines is somewhat equivalent to their weight. Anything you can do to make them lighter weight or more efficient means a very high cost reduction. Because they’re all made out of commodity materials: silicon, aluminum, and steel, and carbon—these are cheap bulk materials. You have to use them efficiently to cover vast surface areas. So we end up winning because we use a lot less material to point the same amount of light, and we use even cheaper materials and manufacturing processes.

We’re also working on making natural gas tanks for substitutions for petroleum or gasoline tanks for cars and light trucks. Per mile, if you give me the same car, and I have a natural gas motor in one and a gasoline motor in the other, the natural gas car will produce about 25 percent less carbon per mile traveled. The only thing that would change that is if there are methane leaks in the extraction process.

Which there are, right?

Tags

Comment on this Story

comments powered by Disqus