• Smithsonian
    Institution
  • Travel
    With Us
  • Smithsonian
    Store
  • Smithsonian
    Channel
  • goSmithsonian
    Visitors Guide
  • Air & Space
    magazine

Smithsonian.com

  • Subscribe
  • History & Archaeology
  • Science
  • Ideas & Innovations
  • Arts & Culture
  • Travel & Food
  • At the Smithsonian
  • Photos
  • Videos
  • Games
  • Shop
  • Art
  • Design
  • Fashion
  • Music & Film
  • Books
  • Art Meets Science
  • Arts & Culture

Seeking the Origins of Amber

By studying the chemical signatures of living trees, Smithsonian's Jorge Santiago-Blay intends to reconstruct ancient forests

| | | Reddit | Digg | Stumble | Email |
  • By Megan Gambino
  • Smithsonian magazine, July-August 2011, Subscribe
View More Photos »
Jorge Santiago Blay
A biologists at Smithsonian's National Museum of Natural History, Jorge Santiago-Blay has gathered some 2,000 samples of amber and exudates from species found around the world and analyzed 1,245 of them. (Tyrone Turner)

Photo Gallery (1/3)

Tree resin

Explore more photos from the story

More from Smithsonian.com

  • A Brief History of the Amber Room

On a May morning in the National Arboretum in Washington, D.C., Jorge Santiago-Blay ducks under the branches of a Norway spruce to admire a thick white scab of resin that has oozed from where a branch was lopped off. Then, using a metal dental pick, he lifts a piece of crusty resin from a 15-foot-long streak under the floppy crown of an Oriental spruce.

Mornings like this make Santiago-Blay, 55, a biologist at Smithsonian’s National Museum of Natural History, sound a bit, well, sappy. “I feel so lucky to be doing this work,” he says, “because it means going to some of the most beautiful places on earth.”

The 446-acre arboretum is one of Santiago-Blay’s favorite collecting spots among the more than 50 botanical gardens he has visited across the country. Nearly 160 families of plants are known to seep “exudates”—such as resins or gums—when they are injured or diseased. That’s about half of all plant families, and his goal is to create a reference library of the substances. “Plant exudation is ubiquitous,” he says. With help from colleagues, he has gathered some 2,000 samples of amber and exudates from species found around the world and analyzed 1,245 of them.

Santiago-Blay hopes to use the samples to identify ancient amber and the trees and plants from which it came.

The impetus for the project was his suspicion, almost 25 years ago, that an amber-entombed scorpion he was studying was too immaculately preserved. “Could I have been fooled?” he remembers wondering. “Could this be a real scorpion in fake amber?”

Amber forms when tree resin is fossilized by high temperatures and pressure over millions of years. Artists value its clarity and color; people have been wearing jewelry of amber, which is relatively easily carved, for 13,000 years. Forgers have been pouring amber-like goo over flies, lizards and other “biological inclusions” for at least 600 years. Physical tests can identify some fakes; amber floats in salt water, generates a charge when rubbed and emits a piney scent when heated. But many counterfeits mimic even these properties of amber.

With his colleagues Joseph Lambert of Trinity University in San Antonio and Yuyang Wu of Northwestern University outside of Chicago, Santiago-Blay wants to work backward, comparing the molecular compositions of resins secreted by plants today with fossilized resins. The work has already been used to reveal that some pieces of amber in museum collections are, in fact, fakes. But the science has broader implications: identifying the plant that produced a sample of amber may shed light on prehistoric landscapes.

“It is one way to recreate probably what were among the dominant plants in a given habitat, and even in the broader ecosystem,” says Conrad Labandeira, a paleoecologist at the National Museum of Natural History.

“To me, it’s exciting,” says Santiago-Blay. “It’s like being a detective. I want to know where it came from so that I can begin to imagine, to picture, to recreate how the forest that produced the resin that eventually became amber looked. To make the forest grow again, so to speak—that is why I do this.”


On a May morning in the National Arboretum in Washington, D.C., Jorge Santiago-Blay ducks under the branches of a Norway spruce to admire a thick white scab of resin that has oozed from where a branch was lopped off. Then, using a metal dental pick, he lifts a piece of crusty resin from a 15-foot-long streak under the floppy crown of an Oriental spruce.

Mornings like this make Santiago-Blay, 55, a biologist at Smithsonian’s National Museum of Natural History, sound a bit, well, sappy. “I feel so lucky to be doing this work,” he says, “because it means going to some of the most beautiful places on earth.”

The 446-acre arboretum is one of Santiago-Blay’s favorite collecting spots among the more than 50 botanical gardens he has visited across the country. Nearly 160 families of plants are known to seep “exudates”—such as resins or gums—when they are injured or diseased. That’s about half of all plant families, and his goal is to create a reference library of the substances. “Plant exudation is ubiquitous,” he says. With help from colleagues, he has gathered some 2,000 samples of amber and exudates from species found around the world and analyzed 1,245 of them.

Santiago-Blay hopes to use the samples to identify ancient amber and the trees and plants from which it came.

The impetus for the project was his suspicion, almost 25 years ago, that an amber-entombed scorpion he was studying was too immaculately preserved. “Could I have been fooled?” he remembers wondering. “Could this be a real scorpion in fake amber?”

Amber forms when tree resin is fossilized by high temperatures and pressure over millions of years. Artists value its clarity and color; people have been wearing jewelry of amber, which is relatively easily carved, for 13,000 years. Forgers have been pouring amber-like goo over flies, lizards and other “biological inclusions” for at least 600 years. Physical tests can identify some fakes; amber floats in salt water, generates a charge when rubbed and emits a piney scent when heated. But many counterfeits mimic even these properties of amber.

With his colleagues Joseph Lambert of Trinity University in San Antonio and Yuyang Wu of Northwestern University outside of Chicago, Santiago-Blay wants to work backward, comparing the molecular compositions of resins secreted by plants today with fossilized resins. The work has already been used to reveal that some pieces of amber in museum collections are, in fact, fakes. But the science has broader implications: identifying the plant that produced a sample of amber may shed light on prehistoric landscapes.

“It is one way to recreate probably what were among the dominant plants in a given habitat, and even in the broader ecosystem,” says Conrad Labandeira, a paleoecologist at the National Museum of Natural History.

“To me, it’s exciting,” says Santiago-Blay. “It’s like being a detective. I want to know where it came from so that I can begin to imagine, to picture, to recreate how the forest that produced the resin that eventually became amber looked. To make the forest grow again, so to speak—that is why I do this.”

    Subscribe now for more of Smithsonian's coverage on history, science and nature.


Related topics: Trees


| | | Reddit | Digg | Stumble | Email |
 

Add New Comment


Name: (required)

Email: (required)

Comment:

Comments are moderated, and will not appear until Smithsonian.com has approved them. Smithsonian reserves the right not to post any comments that are unlawful, threatening, offensive, defamatory, invasive of a person's privacy, inappropriate, confidential or proprietary, political messages, product endorsements, or other content that might otherwise violate any laws or policies.

Comments (2)

During a recent dig at our industrial plant we unearthed a rock (approx 300 lbs.) that looks like amber inside. It was somewhat sweet smelling when burned and it does get a little tacky when in contact with alcohol. Beautiful brown/Orange/Yellow color. Could it be Copal???

Posted by Beata Drwal on July 28,2011 | 02:51 PM

Great observation you are doing. I appreciate your effort. Keep it up. By the way, did he find anything fruitful so far?

Posted by Edward Steve on July 9,2011 | 03:34 PM



Advertisement


Most Popular

  • Viewed
  • Emailed
  • Commented
  1. Will the Real Great Gatsby Please Stand Up?
  2. The Revolutionary Effect of the Paperback Book
  3. TKO By Checkmate: Inside the World of Chessboxing
  4. The Story Behind Banksy
  5. Never Underestimate the Power of a Paint Tube
  6. The Real Deal With the Hirshhorn Bubble
  7. The Saddest Movie in the World
  8. A Brief History of Chocolate
  9. When Did Girls Start Wearing Pink?
  10. Before There Was Photoshop, These Photographers Knew How to Manipulate an Image
  1. The Surprising Satisfactions of a Home Funeral
  2. The Story Behind Banksy
  1. Will the Real Great Gatsby Please Stand Up?
  2. The Story Behind the Peacock Room's Princess
  3. When Did Girls Start Wearing Pink?
  4. The Measure of Genius: Michelangelo’s Sistine Chapel at 500

View All Most Popular »

Advertisement

Follow Us

Smithsonian Magazine
@SmithsonianMag
Follow Smithsonian Magazine on Twitter

Sign up for regular email updates from Smithsonian.com, including daily newsletters and special offers.

In The Magazine

May 2013

  • Patriot Games
  • The Next Revolution
  • Blowing Up The Art World
  • The Body Eclectic
  • Microbe Hunters

View Table of Contents »






First Name
Last Name
Address 1
Address 2
City
State   Zip
Email


Travel with Smithsonian




Smithsonian Store

Stars and Stripes Throw

Our exclusive Stars and Stripes Throw is a three-layer adaption of the 1861 “Stars and Stripes” quilt... $65



View full archiveRecent Issues


  • May 2013


  • Apr 2013


  • Mar 2013

Newsletter

Sign up for regular email updates from Smithsonian magazine, including free newsletters, special offers and current news updates.

Subscribe Now

About Us

Smithsonian.com expands on Smithsonian magazine's in-depth coverage of history, science, nature, the arts, travel, world culture and technology. Join us regularly as we take a dynamic and interactive approach to exploring modern and historic perspectives on the arts, sciences, nature, world culture and travel, including videos, blogs and a reader forum.

Explore our Brands

  • goSmithsonian.com
  • Smithsonian Air & Space Museum
  • Smithsonian Student Travel
  • Smithsonian Catalogue
  • Smithsonian Journeys
  • Smithsonian Channel
  • About Smithsonian
  • Contact Us
  • Advertising
  • Subscribe
  • RSS
  • Topics
  • Member Services
  • Copyright
  • Site Map
  • Privacy Policy
  • Ad Choices

Smithsonian Institution