• Smithsonian
    Institution
  • Travel
    With Us
  • Smithsonian
    Store
  • Smithsonian
    Channel
  • goSmithsonian
    Visitors Guide
  • Air & Space
    magazine

Smithsonian.com

  • Subscribe
  • History & Archaeology
  • Science
  • Ideas & Innovations
  • Arts & Culture
  • Travel & Food
  • At the Smithsonian
  • Photos
  • Videos
  • Games
  • Shop
  • Art
  • Design
  • Fashion
  • Music & Film
  • Books
  • Art Meets Science
  • Arts & Culture

How Do Our Brains Process Music?

In an excerpt from his new book, David Byrne explains why sometimes, he prefers hearing nothing

| | | Reddit | Digg | Stumble | Email |
  • By David Byrne
  • Smithsonian magazine, October 2012, Subscribe
View More Photos »
$Alt
(Clayton Cubitt)

Photo Gallery (1/2)

Byrne sees music as the social glue that holds cultures and communities together.

Explore more photos from the story

Related Links

  • David Byrne in Conversation -- A Smithsonian Associates Event

Related Books

How Music Works

by David Byrne
McSweeney's Publishing, 2012

More from Smithsonian.com

  • David Byrne Offers Advice on How to Enjoy Music

I listen to music only at very specific times. When I go out to hear it live, most obviously. When I’m cooking or doing the dishes I put on music, and sometimes other people are present. When I’m jogging or cycling to and from work down New York’s West Side Highway bike path, or if I’m in a rented car on the rare occasions I have to drive somewhere, I listen alone. And when I’m writing and recording music, I listen to what I’m working on. But that’s it.

I find music somewhat intrusive in restaurants or bars. Maybe due to my involvement with it, I feel I have to either listen intently or tune it out. Mostly I tune it out; I often don’t even notice if a Talking Heads song is playing in most public places. Sadly, most music then becomes (for me) an annoying sonic layer that just adds to the background noise.

As music becomes less of a thing—a cylinder, a cassette, a disc—and more ephemeral, perhaps we will start to assign an increasing value to live performances again. After years of hoarding LPs and CDs, I have to admit I’m now getting rid of them. I occasionally pop a CD into a player, but I’ve pretty much completely converted to listening to MP3s either on my computer or, gulp, my phone! For me, music is becoming dematerialized, a state that is more truthful to its nature, I suspect. Technology has brought us full circle.

I go to at least one live performance a week, sometimes with friends, sometimes alone. There are other people there. Often there is beer, too. After more than a hundred years of technological innovation, the digitization of music has inadvertently had the effect of emphasizing its social function. Not only do we still give friends copies of music that excites us, but increasingly we have come to value the social aspect of a live performance more than we used to. Music technology in some ways appears to have been on a trajectory in which the end result is that it will destroy and devalue itself. It will succeed completely when it self-destructs. The technology is useful and convenient, but it has, in the end, reduced its own value and increased the value of the things it has never been able to capture or reproduce.

Technology has altered the way music sounds, how it’s composed and how we experience it. It has also flooded the world with music. The world is awash with (mostly) recorded sounds. We used to have to pay for music or make it ourselves; playing, hearing and experiencing it was exceptional, a rare and special experience. Now hearing it is ubiquitous, and silence is the rarity that we pay for and savor.

Does our enjoyment of music—our ability to find a sequence of sounds emotionally affecting—have some neurological basis? From an evolutionary standpoint, does enjoying music provide any advantage? Is music of any truly practical use, or is it simply baggage that got carried along as we evolved other more obviously useful adaptations? Paleontologist Stephen Jay Gould and biologist Richard Lewontin wrote a paper in 1979 claiming that some of our skills and abilities might be like spandrels—the architectural negative spaces above the curve of the arches of buildings—details that weren’t originally designed as autonomous entities, but that came into being as a result of other, more practical elements around them.

Dale Purves, a professor at Duke University, studied this question with his colleagues David Schwartz and Catherine Howe, and they think they might have some answers. They discovered that the sonic range that matters and interests us the most is identical to the range of sounds we ourselves produce. Our ears and our brains have evolved to catch subtle nuances mainly within that range, and we hear less, or often nothing at all, outside of it. We can’t hear what bats hear, or the subharmonic sound that whales use. For the most part, music also falls into the range of what we can hear. Though some of the harmonics that give voices and instruments their characteristic sounds are beyond our hearing range, the effects they produce are not. The part of our brain that analyzes sounds in those musical frequencies that overlap with the sounds we ourselves make is larger and more developed—just as the visual analysis of faces is a specialty of another highly developed part of the brain.

The Purves group also added to this the assumption that periodic sounds— sounds that repeat regularly—are generally indicative of living things, and are therefore more interesting to us. A sound that occurs over and over could be something to be wary of, or it could lead to a friend, or a source of food or water. We can see how these parameters and regions of interest narrow down toward an area of sounds similar to what we call music. Purves surmised that it would seem natural that human speech therefore influenced the evolution of the human auditory system as well as the part of the brain that processes those audio signals. Our vocalizations, and our ability to perceive their nuances and subtlety, co-evolved.

In a UCLA study, neurologists Istvan Molnar-Szakacs and Katie Overy watched brain scans to see which neurons fired while people and monkeys observed other people and monkeys perform specific actions or experience specific emotions. They determined that a set of neurons in the observer “mirrors” what they saw happening in the observed. If you are watching an athlete, for example, the neurons that are associated with the same muscles the athlete is using will fire. Our muscles don’t move, and sadly there’s no virtual workout or health benefit from watching other people exert themselves, but the neurons do act as if we are mimicking the observed. This mirror effect goes for emotional signals as well. When we see someone frown or smile, the neurons associated with those facial muscles will fire. But—and here’s the significant part—the emotional neurons associated with those feelings fire as well. Visual and auditory clues trigger empathetic neurons. Corny but true: If you smile you will make other people happy. We feel what the other is feeling—maybe not as strongly, or as profoundly—but empathy seems to be built into our neurology. It has been proposed that this shared representation (as neuroscientists call it) is essential for any type of communication. The ability to experience a shared representation is how we know what the other person is getting at, what they’re talking about. If we didn’t have this means of sharing common references, we wouldn’t be able to communicate.

It’s sort of stupidly obvious—of course we feel what others are feeling, at least to some extent. If we didn’t, then why would we ever cry at the movies or smile when we heard a love song? The border between what you feel and what I feel is porous. That we are social animals is deeply ingrained and makes us what we are. We think of ourselves as individuals, but to some extent we are not; our very cells are joined to the group by these evolved empathic reactions to others. This mirroring isn’t just emotional, it’s social and physical, too. When someone gets hurt we “feel” their pain, though we don’t collapse in agony. And when a singer throws back his head and lets loose, we understand that as well. We have an interior image of what he is going through when his body assumes that shape.

We anthropomorphize abstract sounds, too. We can read emotions when we hear someone’s footsteps. Simple feelings—sadness, happiness and anger—are pretty easily detected. Footsteps might seem an obvious example, but it shows that we connect all sorts of sounds to our assumptions about what emotion, feeling or sensation generated that sound.

The UCLA study proposed that our appreciation and feeling for music are deeply dependent on mirror neurons. When you watch, or even just hear, someone play an instrument, the neurons associated with the muscles required to play that instrument fire. Listening to a piano, we “feel” those hand and arm movements, and as any air guitarist will tell you, when you hear or see a scorching solo, you are “playing” it, too. Do you have to know how to play the piano to be able to mirror a piano player? Edward W. Large at Florida Atlantic University scanned the brains of people with and without music experience as they listened to Chopin. As you might guess, the mirror neuron system lit up in the musicians who were tested, but somewhat surprisingly, it flashed in non-musicians as well. So, playing air guitar isn’t as weird as it sometimes seems. The UCLA group contends that all of our means of communication—auditory, musical, linguistic, visual—have motor and muscular activities at their root. By reading and intuiting the intentions behind those motor activities, we connect with the underlying emotions. Our physical state and our emotional state are inseparable—by perceiving one, an observer can deduce the other.

People dance to music as well, and neurological mirroring might explain why hearing rhythmic music inspires us to move, and to move in very specific ways. Music, more than many of the arts, triggers a whole host of neurons. Multiple regions of the brain fire upon hearing music: muscular, auditory, visual, linguistic. That’s why some folks who have completely lost their language abilities can still articulate a text when it is sung. Oliver Sacks wrote about a brain-damaged man who discovered that he could sing his way through his mundane daily routines, and only by doing so could he remember how to complete simple tasks like getting dressed. Melodic intonation therapy is the name for a group of therapeutic techniques that were based on this discovery.

Mirror neurons are also predictive. When we observe an action, posture, gesture or a facial expression, we have a good idea, based on our past experience, what is coming next. Some on the Asperger spectrum might not intuit all those meanings as easily as others, and I’m sure I’m not alone in having been accused of missing what friends thought were obvious cues or signals. But most folks catch at least a large percentage of them. Maybe our innate love of narrative has some predictive, neurological basis; we have developed the ability to be able to feel where a story might be going. Ditto with a melody. We might sense the emotionally resonant rise and fall of a melody, a repetition, a musical build, and we have expectations, based on experience, about where those actions are leading—expectations that will be confirmed or slightly redirected depending on the composer or performer. As cognitive scientist Daniel Levitin points out, too much confirmation—when something happens exactly as it did before—causes us to get bored and to tune out. Little variations keep us alert, as well as serving to draw attention to musical moments that are critical to the narrative.

Music does so many things to us that one can’t simply say, as many do, “Oh, I love all kinds of music.” Really? But some forms of music are diametrically opposed to one another! You can’t love them all. Not all the time, anyway.

In 1969, Unesco passed a resolution outlining a human right that doesn’t get talked about much—the right to silence. I think they’re referring to what happens if a noisy factory gets built beside your house, or a shooting range, or if a disco opens downstairs. They don’t mean you can demand that a restaurant turn off the classic rock tunes it’s playing, or that you can muzzle the guy next to you on the train yelling into his cellphone. It’s a nice thought though—despite our innate dread of absolute silence, we should have the right to take an occasional aural break, to experience, however briefly, a moment or two of sonic fresh air. To have a meditative moment, a head-clearing space, is a nice idea for a human right.

John Cage wrote a book called, somewhat ironically, Silence. Ironic because he was increasingly becoming notorious for noise and chaos in his compositions. He once claimed that silence doesn’t exist for us. In a quest to experience it, he went into an anechoic chamber, a room isolated from all outside sounds, with walls designed to inhibit the reflection of sounds. A dead space, acoustically. After a few moments he heard a thumping and whooshing, and was informed those sounds were his own heartbeat and the sound of his blood rushing through his veins and arteries. They were louder than he might have expected, but okay. After a while, he heard another sound, a high whine, and was informed that this was his nervous system. He realized then that for human beings there was no such thing as true silence, and this anecdote became a way of explaining that he decided that rather than fighting to shut out the sounds of the world, to compartmentalize music as something outside of the noisy, uncontrollable world of sounds, he’d let them in: “Let sounds be themselves rather than vehicles for manmade theories or expressions of human sentiments.” Conceptually at least, the entire world now became music.

If music is inherent in all things and places, then why not let music play itself? The composer, in the traditional sense, might no longer be necessary. Let the planets and spheres spin. Musician Bernie Krause has just come out with a book about “biophony”—the world of music and sounds made by animals, insects and the nonhuman environment. Music made by self-organizing systems means that anyone or anything can make it, and anyone can walk away from it. John Cage said the contemporary composer “resembles the maker of a camera who allows someone else to take the picture.” That’s sort of the elimination of authorship, at least in the accepted sense. He felt that traditional music, with its scores that instruct which note should be played and when, are not reflections of the processes and algorithms that activate and create the world around us. The world indeed offers us restricted possibilities and opportunities, but there are always options, and more than one way for things to turn out. He and others wondered if maybe music might partake of this emergent process.

A small device made in China takes this idea one step further. The Buddha Machine is a music player that uses random algorithms to organize a series of soothing tones and thereby create never-ending, non-repeating melodies. The programmer who made the device and organized its sounds replaces the composer, effectively leaving no performer. The composer, the instrument and the performer are all one machine. These are not very sophisticated devices, though one can envision a day when all types of music might be machine-generated. The basic, commonly used patterns that occur in various genres could become the algorithms that guide the manufacture of sounds. One might view much of corporate pop and hip-hop as being machine-made—their formulas are well established, and one need only choose from a variety of available hooks and beats, and an endless recombinant stream of radio-friendly music emerges. Though this industrial approach is often frowned on, its machine-made nature could just as well be a compliment—it returns musical authorship to the ether. All these developments imply that we’ve come full circle: We’ve returned to the idea that our universe might be permeated with music.

I welcome the liberation of music from the prison of melody, rigid structure and harmony. Why not? But I also listen to music that does adhere to those guidelines. Listening to the Music of the Spheres might be glorious, but I crave a concise song now and then, a narrative or a snapshot more than a whole universe. I can enjoy a movie or read a book in which nothing much happens, but I’m deeply conservative as well­—if a song establishes itself within the pop genre, then I listen with certain expectations. I can become bored more easily by a pop song that doesn’t play by its own rules than by a contemporary composition that is repetitive and static. I like a good story and I also like staring at the sea—do I have to choose between the two?

Excerpted from How Music Works by David Byrne, published by McSweeney's Books, © 2012 by Todo Mundo Ltd.


I listen to music only at very specific times. When I go out to hear it live, most obviously. When I’m cooking or doing the dishes I put on music, and sometimes other people are present. When I’m jogging or cycling to and from work down New York’s West Side Highway bike path, or if I’m in a rented car on the rare occasions I have to drive somewhere, I listen alone. And when I’m writing and recording music, I listen to what I’m working on. But that’s it.

I find music somewhat intrusive in restaurants or bars. Maybe due to my involvement with it, I feel I have to either listen intently or tune it out. Mostly I tune it out; I often don’t even notice if a Talking Heads song is playing in most public places. Sadly, most music then becomes (for me) an annoying sonic layer that just adds to the background noise.

As music becomes less of a thing—a cylinder, a cassette, a disc—and more ephemeral, perhaps we will start to assign an increasing value to live performances again. After years of hoarding LPs and CDs, I have to admit I’m now getting rid of them. I occasionally pop a CD into a player, but I’ve pretty much completely converted to listening to MP3s either on my computer or, gulp, my phone! For me, music is becoming dematerialized, a state that is more truthful to its nature, I suspect. Technology has brought us full circle.

I go to at least one live performance a week, sometimes with friends, sometimes alone. There are other people there. Often there is beer, too. After more than a hundred years of technological innovation, the digitization of music has inadvertently had the effect of emphasizing its social function. Not only do we still give friends copies of music that excites us, but increasingly we have come to value the social aspect of a live performance more than we used to. Music technology in some ways appears to have been on a trajectory in which the end result is that it will destroy and devalue itself. It will succeed completely when it self-destructs. The technology is useful and convenient, but it has, in the end, reduced its own value and increased the value of the things it has never been able to capture or reproduce.

Technology has altered the way music sounds, how it’s composed and how we experience it. It has also flooded the world with music. The world is awash with (mostly) recorded sounds. We used to have to pay for music or make it ourselves; playing, hearing and experiencing it was exceptional, a rare and special experience. Now hearing it is ubiquitous, and silence is the rarity that we pay for and savor.

Does our enjoyment of music—our ability to find a sequence of sounds emotionally affecting—have some neurological basis? From an evolutionary standpoint, does enjoying music provide any advantage? Is music of any truly practical use, or is it simply baggage that got carried along as we evolved other more obviously useful adaptations? Paleontologist Stephen Jay Gould and biologist Richard Lewontin wrote a paper in 1979 claiming that some of our skills and abilities might be like spandrels—the architectural negative spaces above the curve of the arches of buildings—details that weren’t originally designed as autonomous entities, but that came into being as a result of other, more practical elements around them.

Dale Purves, a professor at Duke University, studied this question with his colleagues David Schwartz and Catherine Howe, and they think they might have some answers. They discovered that the sonic range that matters and interests us the most is identical to the range of sounds we ourselves produce. Our ears and our brains have evolved to catch subtle nuances mainly within that range, and we hear less, or often nothing at all, outside of it. We can’t hear what bats hear, or the subharmonic sound that whales use. For the most part, music also falls into the range of what we can hear. Though some of the harmonics that give voices and instruments their characteristic sounds are beyond our hearing range, the effects they produce are not. The part of our brain that analyzes sounds in those musical frequencies that overlap with the sounds we ourselves make is larger and more developed—just as the visual analysis of faces is a specialty of another highly developed part of the brain.

The Purves group also added to this the assumption that periodic sounds— sounds that repeat regularly—are generally indicative of living things, and are therefore more interesting to us. A sound that occurs over and over could be something to be wary of, or it could lead to a friend, or a source of food or water. We can see how these parameters and regions of interest narrow down toward an area of sounds similar to what we call music. Purves surmised that it would seem natural that human speech therefore influenced the evolution of the human auditory system as well as the part of the brain that processes those audio signals. Our vocalizations, and our ability to perceive their nuances and subtlety, co-evolved.

In a UCLA study, neurologists Istvan Molnar-Szakacs and Katie Overy watched brain scans to see which neurons fired while people and monkeys observed other people and monkeys perform specific actions or experience specific emotions. They determined that a set of neurons in the observer “mirrors” what they saw happening in the observed. If you are watching an athlete, for example, the neurons that are associated with the same muscles the athlete is using will fire. Our muscles don’t move, and sadly there’s no virtual workout or health benefit from watching other people exert themselves, but the neurons do act as if we are mimicking the observed. This mirror effect goes for emotional signals as well. When we see someone frown or smile, the neurons associated with those facial muscles will fire. But—and here’s the significant part—the emotional neurons associated with those feelings fire as well. Visual and auditory clues trigger empathetic neurons. Corny but true: If you smile you will make other people happy. We feel what the other is feeling—maybe not as strongly, or as profoundly—but empathy seems to be built into our neurology. It has been proposed that this shared representation (as neuroscientists call it) is essential for any type of communication. The ability to experience a shared representation is how we know what the other person is getting at, what they’re talking about. If we didn’t have this means of sharing common references, we wouldn’t be able to communicate.

It’s sort of stupidly obvious—of course we feel what others are feeling, at least to some extent. If we didn’t, then why would we ever cry at the movies or smile when we heard a love song? The border between what you feel and what I feel is porous. That we are social animals is deeply ingrained and makes us what we are. We think of ourselves as individuals, but to some extent we are not; our very cells are joined to the group by these evolved empathic reactions to others. This mirroring isn’t just emotional, it’s social and physical, too. When someone gets hurt we “feel” their pain, though we don’t collapse in agony. And when a singer throws back his head and lets loose, we understand that as well. We have an interior image of what he is going through when his body assumes that shape.

We anthropomorphize abstract sounds, too. We can read emotions when we hear someone’s footsteps. Simple feelings—sadness, happiness and anger—are pretty easily detected. Footsteps might seem an obvious example, but it shows that we connect all sorts of sounds to our assumptions about what emotion, feeling or sensation generated that sound.

The UCLA study proposed that our appreciation and feeling for music are deeply dependent on mirror neurons. When you watch, or even just hear, someone play an instrument, the neurons associated with the muscles required to play that instrument fire. Listening to a piano, we “feel” those hand and arm movements, and as any air guitarist will tell you, when you hear or see a scorching solo, you are “playing” it, too. Do you have to know how to play the piano to be able to mirror a piano player? Edward W. Large at Florida Atlantic University scanned the brains of people with and without music experience as they listened to Chopin. As you might guess, the mirror neuron system lit up in the musicians who were tested, but somewhat surprisingly, it flashed in non-musicians as well. So, playing air guitar isn’t as weird as it sometimes seems. The UCLA group contends that all of our means of communication—auditory, musical, linguistic, visual—have motor and muscular activities at their root. By reading and intuiting the intentions behind those motor activities, we connect with the underlying emotions. Our physical state and our emotional state are inseparable—by perceiving one, an observer can deduce the other.

People dance to music as well, and neurological mirroring might explain why hearing rhythmic music inspires us to move, and to move in very specific ways. Music, more than many of the arts, triggers a whole host of neurons. Multiple regions of the brain fire upon hearing music: muscular, auditory, visual, linguistic. That’s why some folks who have completely lost their language abilities can still articulate a text when it is sung. Oliver Sacks wrote about a brain-damaged man who discovered that he could sing his way through his mundane daily routines, and only by doing so could he remember how to complete simple tasks like getting dressed. Melodic intonation therapy is the name for a group of therapeutic techniques that were based on this discovery.

Mirror neurons are also predictive. When we observe an action, posture, gesture or a facial expression, we have a good idea, based on our past experience, what is coming next. Some on the Asperger spectrum might not intuit all those meanings as easily as others, and I’m sure I’m not alone in having been accused of missing what friends thought were obvious cues or signals. But most folks catch at least a large percentage of them. Maybe our innate love of narrative has some predictive, neurological basis; we have developed the ability to be able to feel where a story might be going. Ditto with a melody. We might sense the emotionally resonant rise and fall of a melody, a repetition, a musical build, and we have expectations, based on experience, about where those actions are leading—expectations that will be confirmed or slightly redirected depending on the composer or performer. As cognitive scientist Daniel Levitin points out, too much confirmation—when something happens exactly as it did before—causes us to get bored and to tune out. Little variations keep us alert, as well as serving to draw attention to musical moments that are critical to the narrative.

Music does so many things to us that one can’t simply say, as many do, “Oh, I love all kinds of music.” Really? But some forms of music are diametrically opposed to one another! You can’t love them all. Not all the time, anyway.

In 1969, Unesco passed a resolution outlining a human right that doesn’t get talked about much—the right to silence. I think they’re referring to what happens if a noisy factory gets built beside your house, or a shooting range, or if a disco opens downstairs. They don’t mean you can demand that a restaurant turn off the classic rock tunes it’s playing, or that you can muzzle the guy next to you on the train yelling into his cellphone. It’s a nice thought though—despite our innate dread of absolute silence, we should have the right to take an occasional aural break, to experience, however briefly, a moment or two of sonic fresh air. To have a meditative moment, a head-clearing space, is a nice idea for a human right.

John Cage wrote a book called, somewhat ironically, Silence. Ironic because he was increasingly becoming notorious for noise and chaos in his compositions. He once claimed that silence doesn’t exist for us. In a quest to experience it, he went into an anechoic chamber, a room isolated from all outside sounds, with walls designed to inhibit the reflection of sounds. A dead space, acoustically. After a few moments he heard a thumping and whooshing, and was informed those sounds were his own heartbeat and the sound of his blood rushing through his veins and arteries. They were louder than he might have expected, but okay. After a while, he heard another sound, a high whine, and was informed that this was his nervous system. He realized then that for human beings there was no such thing as true silence, and this anecdote became a way of explaining that he decided that rather than fighting to shut out the sounds of the world, to compartmentalize music as something outside of the noisy, uncontrollable world of sounds, he’d let them in: “Let sounds be themselves rather than vehicles for manmade theories or expressions of human sentiments.” Conceptually at least, the entire world now became music.

If music is inherent in all things and places, then why not let music play itself? The composer, in the traditional sense, might no longer be necessary. Let the planets and spheres spin. Musician Bernie Krause has just come out with a book about “biophony”—the world of music and sounds made by animals, insects and the nonhuman environment. Music made by self-organizing systems means that anyone or anything can make it, and anyone can walk away from it. John Cage said the contemporary composer “resembles the maker of a camera who allows someone else to take the picture.” That’s sort of the elimination of authorship, at least in the accepted sense. He felt that traditional music, with its scores that instruct which note should be played and when, are not reflections of the processes and algorithms that activate and create the world around us. The world indeed offers us restricted possibilities and opportunities, but there are always options, and more than one way for things to turn out. He and others wondered if maybe music might partake of this emergent process.

A small device made in China takes this idea one step further. The Buddha Machine is a music player that uses random algorithms to organize a series of soothing tones and thereby create never-ending, non-repeating melodies. The programmer who made the device and organized its sounds replaces the composer, effectively leaving no performer. The composer, the instrument and the performer are all one machine. These are not very sophisticated devices, though one can envision a day when all types of music might be machine-generated. The basic, commonly used patterns that occur in various genres could become the algorithms that guide the manufacture of sounds. One might view much of corporate pop and hip-hop as being machine-made—their formulas are well established, and one need only choose from a variety of available hooks and beats, and an endless recombinant stream of radio-friendly music emerges. Though this industrial approach is often frowned on, its machine-made nature could just as well be a compliment—it returns musical authorship to the ether. All these developments imply that we’ve come full circle: We’ve returned to the idea that our universe might be permeated with music.

I welcome the liberation of music from the prison of melody, rigid structure and harmony. Why not? But I also listen to music that does adhere to those guidelines. Listening to the Music of the Spheres might be glorious, but I crave a concise song now and then, a narrative or a snapshot more than a whole universe. I can enjoy a movie or read a book in which nothing much happens, but I’m deeply conservative as well­—if a song establishes itself within the pop genre, then I listen with certain expectations. I can become bored more easily by a pop song that doesn’t play by its own rules than by a contemporary composition that is repetitive and static. I like a good story and I also like staring at the sea—do I have to choose between the two?

Excerpted from How Music Works by David Byrne, published by McSweeney's Books, © 2012 by Todo Mundo Ltd.

    Subscribe now for more of Smithsonian's coverage on history, science and nature.


Related topics: Music Brain Technology Innovation Information Age


| | | Reddit | Digg | Stumble | Email |
 

Add New Comment


Name: (required)

Email: (required)

Comment:

Comments are moderated, and will not appear until Smithsonian.com has approved them. Smithsonian reserves the right not to post any comments that are unlawful, threatening, offensive, defamatory, invasive of a person's privacy, inappropriate, confidential or proprietary, political messages, product endorsements, or other content that might otherwise violate any laws or policies.

Comments (13)

im doing a highschool research paper about the effects of music and why/ how it effects out emotions. this article was not helpful ATALL. theres barley any factual information, its based off of opinions, not a good article for a research paper!

Posted by Jenn on January 30,2013 | 03:38 PM

this is not helpful

Posted by ashily on January 22,2013 | 02:22 PM

I read this in the magazine. I'm often surprised by how normal he appears in print. A few things I found interesting: amused to find Bernie Krause's name smack dab in the middle of two comments/quotes on John Cage - considering Cage's infamous quote about Krause and his music. Secondly, there's nothing ironic at all about the title Silence, considering it was published nine years after his most notorious composition that emphasized that silence, as we normally refer to it, doesn't really exist. Also, the description of "The Buddha Machine" music players is wrong. None of the three that've been released so far (there's a fourth coming soon) use "random algorithms to organize a series of soothing tones and thereby create never-ending, non-repeating melodies." Lastly, I DO love all kinds of music. The idea that "forms of music [can be] diametrically opposed to one another" is just cRaZy. ®ø∂

Posted by Rod Stasick on November 20,2012 | 09:31 PM

I agree with David Byrne on music at restaurants. I feel it is a distraction as well. I LOVE music, but I do not want others to force it on me. If I go to a restaurant with my family on the rare occasion, I want to be able to enjoy the atmosphere of only our conversation, not background noise and commercials. Did I mention I love music? I love to ride my bike with headphones of my music selection,(yeah it is kinda dangerous riding with headphones, but I am usually on bike trail) I do not do so in traffic.!! I love to go for a good jog or brisk walk with headphones. It makes the time go faster?! I especially like cooking dinner with music! I am not a television girl so music is my thing. I even do better with tests, if I listen to music with headphones attached to my ears.It is like it fuels my brain!!??

Posted by angela hodgin on November 19,2012 | 01:47 PM

Most interesting article. As a professional musician and working in healthcare for many years, I have found that music remains marginalized still....and relegated only to what evidence-based science can verify. I believe that there will be other ways of knowing that will be acknowledged and verified as requisite to fully optimize the human condition and its many ways of healing. I would add to this my own theory that music is objective, but responses are subjective and hold the key to meaning. The power of music will always reside in the listener, the context of listening, and the ways meaning is made from the experience. Again, a thoughtful and insightful article.

Posted by Susan Mazer on November 11,2012 | 01:29 PM

An excellent article. Please take it a step further. I would like to add that in some people, if not all, it is not just the facial expression that empathizes. It is the whole body. Memory may be a good indicator. Also natural ability to dance and rhythem may be indicators. 'Chemistry','being of the same mind', similarity in body size/type, and codependence may also be relevant. But I know it can be whole body. And it makes sense, because a facial reaction is connected to a body reaction and visa versa. Ask some physical therapists or craniosacral therapists about this. We just haven't visualized it yet, except maybe with SQUID type detectors. How to turn it off sometimes(a physical equivalent of 'tune-out')would be helpful. Maybe this is why Thoreau had to go to the woods 'to live intentionally'.

Posted by Mary on October 31,2012 | 09:49 AM

An excellent article. Please take it a step further. I would like to add that in some people, if not all, it is not just the facial expression that empathizes. It is the whole body. Memory may be a good indicator. Also natural ability to dance and rhythem may be indicators. 'Chemistry','being of the same mind', similarity in body size/type, and codependence may also be relevant. But I know it can be whole body. And it makes sense, because a facial reaction is connected to a body reaction and visa versa. Ask some physical therapists or craniosacral therapists about this. We just haven't visualized it yet, except maybe with SQUID type detectors. How to turn it off sometimes(a physical equivalent of 'tune-out')would be helpful. Maybe this is why Thoreau had to go to the woods 'to live intentionally'.

Posted by Mary on October 31,2012 | 09:49 AM

I read with great interest David Byrne's musings on the nature of music. My own research for the Tomcha & Vlasch Project brought forth similar conclusions as well as some unexpected insights. For example, listening to the internal sounds of a woman in her third trimester as experienced by the fetus sheds some light on why we may be predisposed to a steady pulse in later exposure to music. Similarly, analyzing the harmonic structure at points of repose (cadence) for primitive and advanced cultures seems to indicate an innate preference for intervals at the low end of the overtone series, not unlike those created by our own vocal cords. In fact, the history of Western music may be viewed as ascending the overtones series from octaves, fifths and fourths, to tertian harmony (thirds) and finally to microtones used in some modern classical compositions. Melody conveys the most information (as per Information Theory) when it artfully thwarts the expectations of the listener so that it is neither too redundant nor too chaotic: something the great composers knew instinctively. Prof. Bering Director: The Tomcha & Vlasch Project.

Posted by Prof. Glenn Bering on October 25,2012 | 12:05 PM

why do the younger generation can,t work without music it makes boring work acceptable it does not prompt individual thought.some people may be inspired by music but now it may be an excuse for using some else,s brain than your own to be inventive.music, art and literature may help but do not let it suppress inspiration from ones self to create or inspire a new direction.

Posted by gerry hill on October 22,2012 | 11:28 AM

I knew that listening to certain genres of music can have an influential affect on one's mood but didn't know the intricate details of why and when. I didn't know that neurons had anything to do with it so this was an interesting article to read. Music is strongly connected in my everyday life and I shed off different characters when doing so. Just like the author of this article put, music in outdoor environments have a disconcerting rush sometimes because I do feel it to be private when I choose it on my own clock. However, music is music, and I feel the sense of calmness on the other hand.

Posted by Joyce Kang on October 4,2012 | 12:16 AM

I agree that we act in a way to fit in. The siciety and our environment have shaped the way we are and we can see reality the way it's been presented to us through media and our everyday interactions with others. The reason why we cry at the movies along with others is because we are all trying to relate and have a sense of unity with our surroundings. This is a good reson why we hear music everywhere and it's normal that we are being pushed into something that everybody else have been pushed into as well. However , music is an art and is sholdn't be a sourse for people to push others into styles they want us to listen. life performances are so much more real and unique and us humans, we need to strive to acomplish all the things that seem real for us and pleasant for our ears too!

Posted by Daria Ivanova on October 3,2012 | 12:36 AM

No wonder David Byrne believes the contemporary and future environment of music will destroy itself by fulfilling itself. In the new John Cage world, it seems, we’ll be sitting around listening to the music of the spheres and waiting for our senses to record some magic moments. I don’t like all kinds of music, and certainly not this kind. At least Mr. Byrne accepts an alternative, an occasional return to what he calls “the prison of melody, rigid structure and harmony.” Thank Heavens for Beethoven, Bach and Brahms, and also Gershwin, Berlin and Hoagy Carmichael.

Posted by Wells Huff on October 3,2012 | 02:16 PM

Fascinating article. Reading about the neurological mirroring that happens when people listen to music made me wonder if similar mirroring happens with visual art. With music, if we can't imagine what instrument the musician played, because of computer-generated sounds, is there less mirroring? If mirroring does happen with visual art, if colorization is done by computer instead of brush stroke or other obvious human touch, would there be less mirroring? If the brush strokes in my paintings were more obvious, would the viewing experience feel more participatory? When I am moved more by art I see in person than by a photo of it, and am moved more by a live concert than by a recording, is it partly due to a higher degree of mirroring? Thank you for stimulating my brain.

Posted by Edith Casterline on September 28,2012 | 03:46 PM



Advertisement


Most Popular

  • Viewed
  • Emailed
  • Commented
  1. The Psychology Behind Superhero Origin Stories
  2. The Story Behind Banksy
  3. Most of What You Think You Know About Grammar is Wrong
  4. The Saddest Movie in the World
  5. Real Places Behind Famously Frightening Stories
  6. Best. Gumbo. Ever.
  7. Teller Reveals His Secrets
  8. A Brief History of Chocolate
  9. When Did Girls Start Wearing Pink?
  10. True Colors
  1. Most of What You Think You Know About Grammar is Wrong
  2. The Glorious History of Handel's Messiah

View All Most Popular »

Advertisement

Follow Us

Smithsonian Magazine
@SmithsonianMag
Follow Smithsonian Magazine on Twitter

Sign up for regular email updates from Smithsonian.com, including daily newsletters and special offers.

In The Magazine

February 2013

  • The First Americans
  • See for Yourself
  • The Dragon King
  • America’s Dinosaur Playground
  • Darwin In The House

View Table of Contents »






First Name
Last Name
Address 1
Address 2
City
State   Zip
Email


Travel with Smithsonian




Smithsonian Store

Framed Lincoln Tribute

This Framed Lincoln Tribute includes his photograph, an excerpt from his Gettysburg Address, two Lincoln postage stamps and four Lincoln pennies... $40



View full archiveRecent Issues


  • Feb 2013


  • Jan 2013


  • Dec 2012

Newsletter

Sign up for regular email updates from Smithsonian magazine, including free newsletters, special offers and current news updates.

Subscribe Now

About Us

Smithsonian.com expands on Smithsonian magazine's in-depth coverage of history, science, nature, the arts, travel, world culture and technology. Join us regularly as we take a dynamic and interactive approach to exploring modern and historic perspectives on the arts, sciences, nature, world culture and travel, including videos, blogs and a reader forum.

Explore our Brands

  • goSmithsonian.com
  • Smithsonian Air & Space Museum
  • Smithsonian Student Travel
  • Smithsonian Catalogue
  • Smithsonian Journeys
  • Smithsonian Channel
  • About Smithsonian
  • Contact Us
  • Advertising
  • Subscribe
  • RSS
  • Topics
  • Member Services
  • Copyright
  • Site Map
  • Privacy Policy
  • Ad Choices

Smithsonian Institution